Inadequate Equilibria: Where and How Civilizations Get Stuck by Eliezer Yudkowsky

Inadequate Equilibria: Where and How Civilizations Get Stuck by Eliezer Yudkowsky

Regular price
Checking stock...
Regular price
Checking stock...
Proud to be B-Corp

Our business meets the highest standards of verified social and environmental performance, public transparency and legal accountability to balance profit and purpose. In short, we care about people and the planet.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

Inadequate Equilibria: Where and How Civilizations Get Stuck by Eliezer Yudkowsky

The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DND) algorithm is described. The DND algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DND) algorithm is described. The DND algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

SKU Nicht verfügbar
ISBN 13 9781939311221
ISBN 10 1939311225
Titel Inadequate Equilibria: Where and How Civilizations Get Stuck
Autor Yudkowsky Eliezer
Buchzustand Nicht verfügbar
Bindungsart Paperback
Verlag Machine Intelligence Research Institute
Erscheinungsjahr 2017-11-15
Seitenanzahl 180
Hinweis auf dem Einband Die Abbildung des Buches dient nur Illustrationszwecken, die tatsächliche Bindung, das Cover und die Auflage können sich davon unterscheiden.
Hinweis Nicht verfügbar