Introduction to Boolean Algebras by Steven Givant

Introduction to Boolean Algebras by Steven Givant

Regular price
Checking stock...
Regular price
Checking stock...
Zusammenfassung

This book is an informal though systematic series of lectures on Boolean algebras. It contains background chapters on topology and continuous functions and includes hundreds of exercises as well as a solutions manual.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

Introduction to Boolean Algebras by Steven Givant

The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di?erent from the modern version, which came into being during the - riod 1864-1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr. oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di?erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for ?rst-order logic, the proof of the Lo ' s conjecture for countable ? rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis ? in set theory. In analysis, Stone's discoveries of the Stone-Cech compac- ?cation and the Stone-Weierstrass approximation theorem were intimately connected to his study of Boolean algebras.

From the reviews:

“This is an excellent and much-needed comprehensive undergraduate textbook on Boolean algebrasIt contains a complete and thorough introduction to the fundamental theory of Boolean algebras.  Aimed at undergraduate mathematics students, the book is, in the first author’s words, “a substantially revised version of Paul Halmos’ “Lectures on Boolean Algebras.”  It certainly achieves its stated goal of “steering a middle course between the elementary arithmetic aspects of the subject” and “the deeper mathematical aspects of the theory” of Boolean algebras.”

“The book is written for undergraduate students who already have skills in proving theorems.  However, since the proofs are so detailed and clear, it could work well as a text for a second or even first course involving substantial proofs.  For this reason, it would also make a great book for a student doing independent study.  The text is somewhat informal in the sense that sometimes proofs appear in the prose rather than under the heading, “Proof”, but it is always clear when this is being done.    Though the book starts with an introduction to Boolean rings, knowledge of group theory or rings is not a prerequisite for using the book.”

… 

“In summary, “Introduction to Boolean algebras” is a gem of a text which fills a long-standing gap in the undergraduate literature.  It combines the best of both worlds by rigorously covering all the fundamental theorems and topics of Boolean algebra while at the same time being easy to read, detailed, and well-paced for undergraduate students.  It is my most highly recommendedtext for undergraduates studying Boolean algebras.”

(Natasha Dobrinen. The Bulletin of Symbolic Logic, Vol. 16 (2), June 2010: 281-282)

"Introduction to Boolean Algebras … is intended for advanced undergraduates. Givant (Mills College) and Halmos … using clear and precise prose, build the abstract theory of Boolean rings and algebras from scratch. … the necessary topological material is developed within the book and an appendix on set theory is included. … Includes an extensive bibliography and more than 800 exercises at all levels of difficulty. Summing Up: Highly recommended. Upper-division undergraduates, graduate students, researchers, and faculty." (S. J. Colley, Choice, Vol. 46 (10), June 2009)

“The authors have written a book for advanced undergraduates and beginning graduate students. … The authors start with the definition of Boolean rings and Boolean algebras, give examples and basic facts and compare both notions. … There are a large number of exercises of varying level of difficulty. Hints for the solutions of the harder problems are given in an appendix. A detailed solutions manual for all exercises is available for instructors. The book can serve as a basis for a variety of courses.” (Martin Weese, Zentralblatt MATH, Vol. 1168, 2009)
Paul R. Halmos (1916-2006) was a prominent American mathematician who taught at the University of Chicago, the University of Michigan, and other schools and made significant contributions to several areas of mathematics, including mathematical logic, ergodic theory, functional analysis, and probability theory. His other Dover books are Algebraic Logic, Finite-Dimensional Vector Spaces, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Lectures on Ergodic Theory, and Naive Set Theory.
SKU Nicht verfügbar
ISBN 13 9780387402932
ISBN 10 0387402934
Titel Introduction to Boolean Algebras
Autor Steven Givant
Serie Undergraduate Texts In Mathematics
Buchzustand Nicht verfügbar
Bindungsart Hardback
Verlag Springer-Verlag New York Inc.
Erscheinungsjahr 2008-12-02
Seitenanzahl 574
Hinweis auf dem Einband Die Abbildung des Buches dient nur Illustrationszwecken, die tatsächliche Bindung, das Cover und die Auflage können sich davon unterscheiden.
Hinweis Nicht verfügbar