P-adic Analysis by Neal Koblitz

P-adic Analysis by Neal Koblitz

Regular price
Checking stock...
Regular price
Checking stock...
Zusammenfassung

This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics, the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

P-adic Analysis by Neal Koblitz

This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research.
SKU Nicht verfügbar
ISBN 13 9780521280600
ISBN 10 0521280605
Titel P-adic Analysis
Autor Neal Koblitz
Serie London Mathematical Society Lecture Note Series
Buchzustand Nicht verfügbar
Bindungsart Paperback
Verlag Cambridge University Press
Erscheinungsjahr 1980-11-28
Seitenanzahl 168
Hinweis auf dem Einband Die Abbildung des Buches dient nur Illustrationszwecken, die tatsächliche Bindung, das Cover und die Auflage können sich davon unterscheiden.
Hinweis Nicht verfügbar