Cart
Free Shipping on all orders in Australia
Over 7 million books in stock
We aim to be carbon neutral by 2022
Essentials of Materials Science and Engineering By Donald R. Askeland

Essentials of Materials Science and Engineering by Donald R. Askeland

Condition - Good
$38.99
Only 1 left

Summary

Presents an understanding of the relationship between the structure, processing, and properties of materials. This book teaches the fundamental concepts of atomic structure and materials behaviors. It discusses developments in materials field such as nanomaterials, smart materials, micro-electro-mechanical systems (MEMS), and biomaterials.

Essentials of Materials Science and Engineering Summary

Essentials of Materials Science and Engineering by Donald R. Askeland

This text provides students with a solid understanding of the relationship between the structure, processing, and properties of materials. Authors Donald Askeland and Pradeep Fulay teach the fundamental concepts of atomic structure and materials behaviors and clearly link them to the "materials" issues that students will have to deal with when they enter the industry or graduate school (e.g. design of structures, selection of materials, or materials failures). While presenting fundamental concepts and linking them to practical applications, the authors emphasize the necessary basics without overwhelming the students with too much of the underlying chemistry or physics. The book covers fundamentals in an integrated approach that emphasizes applications of new technologies that engineered materials enable. New and interdisciplinary developments in materials field such as nanomaterials, smart materials, micro-electro-mechanical (MEMS) systems, and biomaterials are also discussed.

Table of Contents

1. Introduction to Materials Science and Engineering Introduction / What is Materials Science and Engineering? / Classification of Materials / Functional Classification of Materials / Classification of Materials Based on Structure / Environmental and Other Effects / Materials Design and Selection / Summary / Glossary / Problems 2. Atomic Structure Introduction / The Structure of Materials: Technological Relevance / The Structure of the Atom / The Electronic Structure of the Atom / The Periodic Table / Atomic Bonding / Binding Energy and Interatomic Spacing / Summary / Glossary / Problems 3. Atomic and Ionic Arrangements Introduction / Short-Range Order Versus Long-Range Order / Amorphous Materials: Principles and Technological Applications / Lattice, Unit Cells, Basis, and Crystal Structure / Allotropic or Polymorphic Transformations / Points, Directions, and Planes in the Unit Cell / Interstitial Sites / Crystal Structures of Ionic Materials / Covalent Structures / Diffraction Techniques for Crystal Structure Analysis / Summary / Glossary / Problems 4. Imperfections in the Atomic and Ionic Arrangements Introduction / Point Defects / Other Point Defects / Dislocations / Significance of Dislocations / Schmid"s Law / Influence of Crystal Structure / Surface Defects / Importance of Defects / Summary / Glossary / Problems 5. Atomic and Ionic Movements in Materials Introduction / Applications of Diffusion / Stability of Atoms and Ions / Mechanisms for Diffusion / Activation Energy for Diffusion / Rate of Diffusion (Fick"s First Law) / Factors Affecting Diffusion / Permeability of Polymers / Composition Profile (Fick"s Second Law) / Diffusion and Materials Processing / Summary / Glossary / Problems 6. Mechanical Properties and Behavior Introduction / Technological Significance / Terminology for Mechanical Properties / The Tensile Test: Use of the Stress-Strain Diagram / Properties Obtained from the Tensile Test / True Stress and True Strain / The Bend Test for Brittle Materials / Hardness of Materials / Strain Rate Effects and Impact Behavior / Properties Obtained from the Impact Test / Summary / Glossary / Problems 7. Fracture Mechanics Introduction / Fracture Mechanics / The Importance of Fracture Mechanics / Microstructural Features of Fracture in Metallic Materials / Microstructural Features of Fractures in Ceramics, Glasses, and Composites / Weibull Statistics for Failure Strength Analysis / Fatigue / Results of the Fatigue Test / Application of Fatigue Testing / Creep, Stress Rupture, and Stress Corrosion / Evaluation of Creep Behavior / Summary / Glossary / Problems 8. Strain Hardening and Annealing Introduction / Relationship of Cold Working to the Stress-Strain Curve / Strain-Hardening Mechanisms / Properties Versus Percent Cold Work / Microstructure, Texture Strengthening, and Residual Stresses / Characteristics of Cold Working / The Three Stages of Annealing / Control of Annealing / Annealing and Materials Processing / Hot Working / Summary / Glossary / Problems 9. Principles of Solidification Introduction / Technological Significance / Nucleation / Growth Mechanisms / Cooling Curves / Cast Structure / Solidification Defects / Casting Processes for Manufacturing Components / Continuous Casting, Ingot Casting, and Single Crystal Growth / Solidification of Polymers and Inorganic Glasses / Joining of Metallic Materials / Summary / Glossary / Problems 10. Solid Solutions and Phase Equilibrium Introduction / Phases and the Phase Diagram / Solubility and Solid Solutions / Conditions for Unlimited Solid Solubility / Solid-Solution Strengthening / Isomorphous Phase Diagrams / Relationship Between Properties and the Phase Diagram / Solidification of a Solid-Solution Alloy / Summary / Glossary / Problems 11. Dispersion Strengthening and Eutectic Phase Diagram Introduction / Principles and Examples of Dispersion Strengthening / Intermetallic Compounds / Phase Diagrams Containing Three-Phase Reactions / The Eutectic Phase Diagram / Strength of Eutectic Alloys / Eutectics and Materials Processing / Nonequilibrium Freezing in the Eutectic System / Summary / Glossary / Problems 12. Dispersion Strengthening by Phase Transformations and Heat Treatment Introduction / Nucleation and Growth in Solid-State Reactions / Alloys Strengthened by Exceeding the Solubility Limit / Age or Precipitation Hardening / Applications of Age-Hardened Alloys / Microstructural Evolution in Age or Precipitation Hardening / Effects of Aging Temperature and Time / Requirements for Age Hardening / Use of Age-Hardenable Alloys at High Temperatures / The Eutectoid Reaction / Controlling the Eutectoid Reaction / The Martensitic Reaction and Tempering / Summary / Glossary / Problems 13. Heat Treatment of Steels and Cast Irons Introduction / Designation and Classifications for Steels / Simple Heat Treatments / Isothermal Heat Treatments / Quench and Temper Heat Treatments / Effect of Alloying Elements / Application of Hardenability / Special Steels / Surface Treatments / Weldability of Steel / Stainless Steels / Cast Irons / Summary / Glossary / Problems 14. Nonferrous Alloys Introduction / Aluminum Alloys / Magnesium and Beryllium Alloys / Copper Alloys / Nickel and Cobalt Alloys / Titanium Alloys / Refractory and Precious Metals / Summary / Glossary / Problems 15. Ceramic Materials Introduction / Applications of Ceramics / Properties of Ceramics / Synthesis and Processing of Ceramic Powders / Characteristics of Sintered Ceramics / Inorganic Glasses / Glass-Ceramics / Processing and Applications of Clay Products / Refractories / Other Ceramic Materials / Summary / Glossary / Problems 16. Polymers Introduction / Classification of Polymers / Addition and Condensation Polymerization / Degree of Polymerization / Typical Thermoplastics / Structure-Property Relationships in Thermoplastics / Effect of Temperature on Thermoplastics / Mechanical Properties of Thermoplastics / Elastomers (Rubbers) / Thermosetting Polymers / Adhesives / Polymer Processing and Recycling / Summary / Glossary / Problems 17. Composites: Teamwork and Synergy in Materials Introduction / Dispersion-Strengthened Composites / Particulate Composites / Fiber-Reinforced Composites / Characteristics of Fiber-Reinforced Composites / Manufacturing Fibers and Composites / Fiber-Reinforced Systems and Applications / Laminar Composite Materials / Examples and Applications of Laminar Composites / Sandwich Structures / Summary / Glossary / Problems Appendix A: Selected Physical Properties of Metals Appendix B: The Atomic and Ionic Radii of Selected Elements Answers to Selected Problems Index

Additional information

GOR011232897
9780495438502
0495438502
Essentials of Materials Science and Engineering by Donald R. Askeland
Used - Good
Paperback
Cengage Learning, Inc
2009-02-08
624
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Essentials of Materials Science and Engineering