• Free Shipping on all orders in Australia
  • Over 7 million books in stock
  • Proud to be B-Corp
  • We aim to be carbon neutral by 2022
  • Over 120,000 Trustpilot reviews
Item 1 of 0
Physics of Semiconductor Devices By Massimo Rudan

Physics of Semiconductor Devices by Massimo Rudan

Condition - New
Only 2 left


This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices.

This book will be specially printed for your order, which means it may take a little longer to arrive (5 days). We do this to cut down on waste & to help protect our planet.

Physics of Semiconductor Devices Summary

Physics of Semiconductor Devices by Massimo Rudan

This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor-device parameters.

About Massimo Rudan

M. Rudan (b. 1949) graduated in Electrical Engineering (1973) and in Physics (1976), both at the University of Bologna, Italy. Lecturer (1978), Associate Professor (1985), and Full Professor of Electronics (1990) at the Faculty of Engineering of the same University. Early investigations (1975-1980) in the field of the analytical modeling of semiconductor devices. Since 1980 M. R. has been working in a group involved in investigations on physics of carrier transport and numerical analysis of semiconductor devices. Visiting scientist, on a one-year assignment (1986), at the IBM T. J. Watson Research Center, studying solution methods for the Boltzmann Transport Equation. Reviewer and Guest Editor of the IEEE Transactions on Computer-Aided Design and IEEE Transactions on Electron Devices; Editor of COMPEL and of the International Journal of Numerical Modeling; Reviewer of the IEEE Electron Device Letters, Solid-State Electronics, Electronics Letters, Physical Review B, Journal of Applied Physics; Program Chairman, Chairman, or Committee Member, of the IEDM, SISDEP (SISPAD), ESSDERC, and IWCE International Conferences. With H. Baltes and W. Goepel, M. R. is a recipient of the 1998 Koerber Foundation Award for the Project "Elektronische 'Mikronase' fur fluchtige organische Verbindungen" ("Electronic 'Micronose' for Volatile Organic Compounds"). In 2001 M. R. was one of the founders of the Advanced Research Center for Electronic Systems (ARCES) of the University of Bologna. Distinguished Lecturer of the Electron Device Society of the IEEE (2004) and IEEE Fellow (2008).

Table of Contents

Part I A Review of Analytical Mechanics and Electromagnetism.- Analytical Mechanics.- Coordinate Transformations and Invariance Properties.- Applications of the Concepts of Analytical Mechanics.- Electromagnetism.- Applications of the Concepts of Electromagnetism.- Part II Introductory Concepts to Statistical and Quantum Mechanics.- Classical Distribution Function and Transport Equation.- From Classical Mechanics to Quantum Mechanics.- Time-Independent Schrodinger Equation.- Time-Dependent Schrodinger Equation.- General Methods of Quantum Mechanics.- Part III Applications of the Schrodinger Equation.- Elementary Cases.- Cases Related to the Linear Harmonic Oscillator.- Other Examples of the Schrodinger Equation.- Time-Dependent Perturbation Theory.- Part IV Systems of Interacting Particles- Quantum Statistics.- Many-Particle Systems.- Separation of Many-Particle Systems.- Part V Applications to Semiconducting Crystals.- Periodic Structures.- Electrons and Holes in Semiconductors at Equilibrium.- Part VI Transport Phenomena in Semiconductors.- Mathematical Model of Semiconductor Devices.- Generation-Recombination and Mobility.- Part VII Basic Semiconductor Devices.- Bipolar Devices.- MOS Devices.- Part VIII Miscellany.- Thermal Diffusion.- Thermal Oxidation- Layer Deposition.- Measuring the Semiconductor Parameters.

Additional information

Physics of Semiconductor Devices by Massimo Rudan
Springer-Verlag New York Inc.
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Physics of Semiconductor Devices