Cart
Free Shipping in Australia
Proud to be B-Corp

Stability and Transition in Shear Flows Peter J. Schmid

Stability and Transition in Shear Flows By Peter J. Schmid

Stability and Transition in Shear Flows by Peter J. Schmid


$350.79
Condition - New
Only 2 left

Summary

By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course.

Stability and Transition in Shear Flows Summary

Stability and Transition in Shear Flows by Peter J. Schmid

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Stability and Transition in Shear Flows Reviews

From the reviews:

SIAM REVIEW

This book presents a modern treatment of stability in shear flows. Stability theory has seen a number of classic treatments over the years...Schmid and Henningson's book builds on these and offers much new material relevant to stability in shear flows...The MATLAB codes included in the appendix and a discussion of the effects of rounding error and resolution on the computations of eigenvalues of linear stability operators will be particularly helpful for students and researchers as they get started with stability computations...As the basis for a course, the first part of the book would permit students to build a solid foundation in classical and modern stability theory, while a selection of advanced topics from the second half of the book could be treated later in the course or through projects and independent study by students.

ZENTRALBLATT MATH

The book addresses to graduate students as well as to a broad community of researchers with a basic knowledge of fundamental fluid dynamics...The topics are treated with mathematical rigor while the physical motivation and usefulness of mathematical concepts is kept close at hand. The work is elegantly structured, and the graphical material is very suggestive.

Table of Contents

1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

Additional information

NLS9781461265641
9781461265641
1461265649
Stability and Transition in Shear Flows by Peter J. Schmid
New
Paperback
Springer-Verlag New York Inc.
2012-09-16
558
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Stability and Transition in Shear Flows