Free Shipping in Australia on over 5 million books in stock
Ocean Biogeochemistry By Volume editor Michael J. R. Fasham

Ocean Biogeochemistry
by Volume editor Michael J. R. Fasham

In Stock
$66.99
inc. GST
During the past 15 years an international programme, the Joint Global Ocean Flux Study (JGOFS), has been studying the ocean carbon cycle to quantify and model the biological and physical processes whereby CO2 is pumped from the ocean's surface to the depths of the ocean, where it can remain for hundreds of years.
Only 1 left

Ocean Biogeochemistry Summary


Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change by Volume editor Michael J. R. Fasham

Oceans account for 50% of the anthropogenic CO2 released into the atmosphere. During the past 15 years an international programme, the Joint Global Ocean Flux Study (JGOFS), has been studying the ocean carbon cycle to quantify and model the biological and physical processes whereby CO2 is pumped from the ocean's surface to the depths of the ocean, where it can remain for hundreds of years. This project is one of the largest multi-disciplinary studies of the oceans ever carried out and this book synthesises the results. It covers all aspects of the topic ranging from air-sea exchange with CO2, the role of physical mixing, the uptake of CO2 by marine algae, the fluxes of carbon and nitrogen through the marine food chain to the subsequent export of carbon to the depths of the ocean. Special emphasis is laid on predicting future climatic change.

Why buy from World of Books

Our excellent value books literally don't cost the earth
Free delivery in Australia
Read more here
Every used book bought is one saved from landfill

Ocean Biogeochemistry Reviews


From the reviews:

"The volume consistently conveys both the importance of the ocean in the global carbon cycle and the uncertainty of the oceanic response to global change. ... The stated objective of The IGBP Series, to present key results of the JGOFS project, is accomplished. ... The design of the book is very attractive, the type clear, and the figure size appropriate. ... this volume provides a valuable state of the art of ocean biogeochemistry for those interested in the carbon cycle or climate change." (Mary-Elena Carr, Ecology, Vol. 85 (7), 2004)

Table of Contents


Acknowledgements.- References.- 1 Biogeochemical Provinces: Towards a JGOFS Synthesis.- 1.1 Plankton Community Structure and Distribution.- 1.2 Partitioning the Oceans.- 1.3 Primary Production in Ocean Domains and Provinces.- 1.3.1 Adding up Global PP Observations.- 1.4 Bacterial Production and DOC Flux.- 1.5 A Provincial Outlook.- Acknowledgements.- References.- 2 Physical Transport of Nutrients and the Maintenance of Biological Production.- 2.1 Introduction.- 2.2 Global Overturning Circulation and Nutrient Transport.- 2.2.1 Overturning Circulation and Water-Mass Distributions.- 2.2.2 Southern Ocean.- 2.2.3 Nutrient Supply to the Northern Basins.- 2.2.4 Summary.- 2.3 Convection.- 2.3.1 Vertical Transfer of Nutrients.- 2.3.2 Biophysical Interactions and Convection.- 2.3.3 Limited Role of Convection.- 2.3.4 Summary.- 2.4 Wind-Driven Circulations: Gyres and Boundary Currents.- 2.4.1 Wind-Induced Upwelling and Gyre Circulations.- 2.4.2 Gyre-Scale Circulations.- 2.4.3 Subduction and Fluid Transfer into the Seasonal Boundary Layer.- 2.4.4 Oligotrophic Subtropical Gyres.- 2.4.5 Western Boundary Transport of Nutrients.- 2.4.6 Summary.- 2.5 Smaller-Scale Circulations: Mesoscale Eddies, Waves and Sub-Mesoscale Fronts.- 2.5.1 Formation of Mesoscale Eddies and Sub-Mesoscale Fronts.- 2.5.2 Local Response to Planetary Waves, Eddies and Fronts.- 2.5.3 Far Field Effects: Eddy Transport and Diffusion.- 2.5.4 Summary.- 2.6 Interannual and Long-Term Variability.- 2.6.1 Coupled Atmosphere-Ocean Changes: ENSO.- 2.6.2 North Atlantic Oscillation.- 2.6.3 Changes in Overturning Circulation.- 2.6.4 Summary.- 2.7 Conclusions.- Acknowledgements.- Notes.- References.- 3 Continental Margin Exchanges.- 3.1 Introduction.- 3.2 Recycling Systems.- 3.3 Export Systems.- 3.4 Coastal Upwelling Systems.- 3.5 California Current System.- 3.6 Humboldt Current System.- 3.7 Benguela Current System.- 3.8 Monsoonal Upwelling Systems.- 3.9 Biogeochemical Budgeting.- 3.10 The Arctic Shelves.- 3.10.1 Introduction.- 3.10.2 The Arctic Ocean As a Mediterranean, Shelf-Dominated Sea.- 3.10.3 The Shelves of the Arctic Ocean.- 3.10.4 Barents Shelf.- 3.10.5 Kara Shelf.- 3.10.6 Laptev Shelf.- 3.10.7 East Siberian and Chukchi Shelves.- 3.10.8 Beaufort Shelf.- 3.10.9 The Mackenzie Shelf of the Beaufort Sea as a Case Study.- 3.10.10 Shelf to Basin Sediment Transport in the Arctic.- 3.10.11 CH4, DMS (Dimethyl-Sulphide) Production in the Arctic.- 3.10.12 A Budget for the Arctic Shelves.- 3.10.13 Global Change; Speculation on Consequences for Arctic Shelves.- 3.11 Marginal Seas.- 3.11.1 High Latitude Marginal Seas.- 3.11.2 Semi-Enclosed Marginal Seas.- 3.11.3 Initial Synthesis.- 3.11.4 Future Research.- 3.11.5 Summary.- Acknowledgments.- References.- Apendix 3.1 - Continental Margins: Site Descriptions.- 4 Phytoplankton and Their Role in Primary, New, and Export Production.- 4.1 Introduction.- 4.1.1 A Brief Introduction to Phytoplankton.- 4.1.2 Photosynthesis and Primary Production.- 4.1.3 Measuring Photosynthesis and Net Primary Production in the Sea.- 4.1.4 A Brief History of the Measurement of Primary Productivity in the Oceans.- 4.1.5 Quantifying Global Net Primary Productivity in the Oceans.- 4.1.6 Export, New and 'True New' Production.- 4.1.7 Elemental Ratios and Constraints on New Production.- 4.1.8 New Production, Export Production, and Net Community Production.- 4.1.9 Measurement of New Production.- 4.1.10 Measurement of Net Community Production.- 4.1.11 Measurement of Export Production.- 4.1.12 Summary of Methods.- 4.2 Synthesis.- 4.2.1 Physical Controls of Export Fluxes: the Importance of Functional Groups.- 4.2.2 Calcium Carbonate Precipitation.- 4.2.3 Primary, New and Export Production and the Global Carbon Cycle on Longer Time Scales.- References.- 5 Carbon Dioxide Fluxes in the Global Ocean.- 5.1 Introduction.- 5.2 The Oceans' Influence on Atmospheric CO2.- 5.2.1 The Ocean Sets the Steady-State Atmospheric CO2 Concentration.- 5.2.2 The Pre-Industrial Steady State.- 5.2.3 Pre-Industrial North-South Transports.- 5.3 How Big is the Global Ocean Sink?.- 5.3.1 1-D Models Calibrated with 14C.- 5.3.2 3-D Models of the Ocean Carbon Cycle.- 5.3.3 13C Changes with Time in the Ocean.- 5.3.4 Atmospheric Observations.- 5.3.5 Observations of the Air-Sea Flux.- 5.3.6 Preformed Total Carbon Methods and the Ocean Inventory of CO2.- 5.3.7 Summary of Recent Estimates of the Ocean Sink.- 5.4 What Processes Control Air-Sea CO2 Flux?.- 5.4.1 Patterns in the Global Survey.- 5.4.2 Comparison Using Models.- 5.4.3 Modelled Future Uptake of Anthropogenic CO2.- 5.5 Variability in the CO2 Signal.- 5.5.1 Seasonal Variation.- 5.5.2 Inter-Annual Variation.- 5.6 The Gas Transfer Velocity.- 5.7 Conclusion: the Next Ten Years.- Acknowledgements.- References.- 6 Water Column Biogeochemistry below the Euphotic Zone.- 6.1 Introduction.- 6.2 The Twilight Zone: Biology, Biogeochemical Processes and Fluxes.- 6.2.1 Biology of the Twilight Zone.- 6.2.2 Nature of the Exported Material and Processes.- 6.2.3 Microbial Production of Nitrous Oxide.- 6.3 The Fluxes of Biogenic Matter versus Depth.- 6.3.1 The Export Flux out of the Euphotic Zone.- 6.3.2 The Export Flux towards the Ocean's Interior (>1000 m).- 6.4 The Variable Composition of the World Ocean Waters along the Conveyor Belt.- 6.5 Conclusions and Perspectives.- 6.5.1 The Ventilation Depth and the ?-Ratio.- 6.5.2 The Role of Mineral Ballasts in the Export of Carbon to the Ocean Interior.- References.- 7 The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle.- 7.1 Introduction.- 7.1.1 Climate and Change - Present Status.- 7.1.2 Examples of Feedbacks in the Present and the Geological Past.- 7.2 Feedbacks.- 7.2.1 Definition.- 7.2.2 Identification.- 7.2.3 Classification.- 7.2.4 Magnitude.- 7.2.5 Evolution.- 7.2.6 Interactions between Feedbacks.- 7.2.7 Scales and Response Times.- 7.2.8 Degree of Confidence - Understanding Feedbacks.- 7.3 What do Current Models Predict?.- 7.4 Status of Our Understanding of Feedbacks.- 7.5 Nutrient Dynamics.- 7.6 Phytoplankton and Carbon Limitation.- 7.6.1 Atmospheric Supply of Nutrients.- 7.6.2 Nitrogen Fixation.- 7.6.3 Changes in Nutrient Uptake Stoichiometry - the Redfield Ratio.- 7.6.4 Export Production and Remineralisation in the Deep Ocean.- 7.7 The Calcifiers.- 7.7.1 Biogeochemistry and Feedbacks.- 7.7.2 Global Distributions.- 7.7.3 Controlling Factors, Forcing and Modelling.- 7.7.4 A Case Study - the Bering Sea.- 7.8 Iron Supply to the Oceans.- 7.8.1 How Much of the Ocean Is Iron-Poor?.- 7.8.2 The Supply of Iron to the Ocean.- 7.8.3 Atmospheric Deposition of Iron versus Upwelling Supply.- 7.8.4 Dust Supply - Global Maps and Fluxes.- 7.8.5 Dust Transport - from Soil to Phytoplankton.- 7.8.6 Response by the Biota - Detection.- 7.8.7 The Future - Climate Change and Dust Deposition.- 7.8.8 A Case Study - Uncertainties in Projection.- 7.9 Dimethyl Sulphide and the Biota.- 7.9.1 The CLAW Hypothesis.- 7.9.2 What Produces DMSP/DMS?.- 7.9.3 Global Distributions of DMS.- 7.9.4 The Haptophyte Connection.- 7.10 UV-B and Ozone Depletion.- 7.10.1 Present Status of Ozone Depletion.- 7.10.2 Phytoplankton and Primary Production.- 7.10.3 Dissolved Organic Matter and Heterotrophic Bacteria.- 7.10.4 Pelagic Community Response.- 7.10.5 The Future.- 7.11 Summary of Biotic Feedbacks.- 7.12 Climate - Variability versus Change.- 7.12.1 Climate Change.- 7.12.2 Climate Variability.- 7.12.3 Regime Shifts.- 7.12.4 Unexpected Biological Responses to Climate Change.- 7.13 Modeling - Future Goals.- 7.14 The Future.- 7.14.1 Detection and Projection.- 7.14.2 Does the 'Initial' Condition Still Exist?.- 7.14.3 The Need for a Regional Approach.- 7.14.4 A New Definition of Biogeochemical Provinces?.- 7.15 Summary.- Acknowledgements.- References.- 8 Benthic Processes and the Burial of Carbon.- 8.1 Introduction.- 8.2 Processes of Transport and Turnover of Material in the Deep Ocean.- 8.2.1 Transfer of Organic Material from the Surface to the Deep Ocean.- 8.2.2 Benthic Carbon Turnover Processes.- 8.3 Quantitative Estimates of Carbon Deposition and Carbon Turnover.- 8.3.1 Strategies for Quantification of Benthic Fluxes.- 8.3.2 Regional Assessments of Deep-Ocean Fluxes.- 8.3.3 Global Estimates of Deep Ocean Carbon Deposition and Remineralization.- 8.4 Proxy Indicators of Paleoproductivity.- 8.4.1 Estimates Based on Organic Carbon Burial Rates.- 8.4.2 Estimates Based on Biomarker Accumulation Rates.- 8.4.3 Estimates Based on Barium Accumulation Rates.- 8.4.4 Estimates Based on Radionuclide Ratios.- 8.4.5 Estimates Based on Redox-Sensitive Trace Elements.- 8.4.6 Estimates Based on Benthic and Planktonic Foraminifera.- 8.4.7 Estimates Based on Coccolithophorids and Diatoms.- 8.4.8 Proxies of Surface Nutrient Concentration.- 8.4.9 Proxies of Surface Nutrient UtiUzation Efficiency.- 8.5 Conclusions.- References.- 9 Global Ocean Carbon Cycle Modeling.- 9.1 Introduction.- 9.2 Anthropogenic Carbon Uptake, Transient Tracers, and Physics.- 9.3 Global Biogeochemical Cycles.- 9.4 Ecosystem Dynamics.- 9.5 Other Topics.- 9.5.1 Mesoscale Physics.- 9.5.2 Climate Variability and Secular Change.- 9.5.3 Land, Coastal Ocean, and Sediment Interactions.- 9.5.4 Inverse Modeling and Data Assimilation.- 9.6 Summary.- Acknowledgements.- References.- 10 Temporal Studies of Biogeochemical Processes Determined from Ocean Time-Series Observations During the JGOFS Era.- 10.1 Introduction.- 10.2 The Oceanic Carbon Cycle and the Biological Carbon Pump.- 10.3 Global Inventory of JGOFS Time-Series Programs.- 10.3.1 Bermuda Atlantic Time-Series Study (BATS).- 10.3.2 Dynamique des Flux Atmospherique en Me Present Status.- 7.1.2 Examples of Feedbacks in the Present and the Geological Past.- 7.2 Feedbacks.- 7.2.1 Definition.- 7.2.2 Identification.- 7.2.3 Classification.- 7.2.4 Magnitude.- 7.2.5 Evolution.- 7.2.6 Interactions between Feedbacks.- 7.2.7 Scales and Response Times.- 7.2.8 Degree of Confidence - Understanding Feedbacks.- 7.3 What do Current Models Predict?.- 7.4 Status of Our Understanding of Feedbacks.- 7.5 Nutrient Dynamics.- 7.6 Phytoplankton and Carbon Limitation.- 7.6.1 Atmospheric Supply of Nutrients.- 7.6.2 Nitrogen Fixation.- 7.6.3 Changes in Nutrient Uptake Stoichiometry - the Redfield Ratio.- 7.6.4 Export Production and Remineralisation in the Deep Ocean.- 7.7 The Calcifiers.- 7.7.1 Biogeochemistry and Feedbacks.- 7.7.2 Global Distributions.- 7.7.3 Controlling Factors, Forcing and Modelling.- 7.7.4 A Case Study - the Bering Sea.- 7.8 Iron Supply to the Oceans.- 7.8.1 How Much of the Ocean Is Iron-Poor?.- 7.8.2 The Supply of Iron to the Ocean.- 7.8.3 Atmospheric Deposition of Iron versus Upwelling Supply.- 7.8.4 Dust Supply - Global Maps and Fluxes.- 7.8.5 Dust Transport - from Soil to Phytoplankton.- 7.8.6 Response by the Biota - Detection.- 7.8.7 The Future - Climate Change and Dust Deposition.- 7.8.8 A Case Study - Uncertainties in Projection.- 7.9 Dimethyl Sulphide and the Biota.- 7.9.1 The CLAW Hypothesis.- 7.9.2 What Produces DMSP/DMS?.- 7.9.3 Global Distributions of DMS.- 7.9.4 The Haptophyte Connection.- 7.10 UV-B and Ozone Depletion.- 7.10.1 Present Status of Ozone Depletion.- 7.10.2 Phytoplankton and Primary Production.- 7.10.3 Dissolved Organic Matter and Heterotrophic Bacteria.- 7.10.4 Pelagic Community Response.- 7.10.5 The Future.- 7.11 Summary of Biotic Feedbacks.- 7.12 Climate - Variability versus Change.- 7.12.1 Climate Change.- 7.12.2 Climate Variability.- 7.12.3 Regime Shifts.- 7.12.4 Unexpected Biological Responses to Climate Change.- 7.13 Modeling - Future Goals.- 7.14 The Future.- 7.14.1 Detection and Projection.- 7.14.2 Does the 'Initial' Condition Still Exist?.- 7.14.3 The Need for a Regional Approach.- 7.14.4 A New Definition of Biogeochemical Provinces?.- 7.15 Summary.- Acknowledgements.- References.- 8 Benthic Processes and the Burial of Carbon.- 8.1 Introduction.- 8.2 Processes of Transport and Turnover of Material in the Deep Ocean.- 8.2.1 Transfer of Organic Material from the Surface to the Deep Ocean.- 8.2.2 Benthic Carbon Turnover Processes.- 8.3 Quantitative Estimates of Carbon Deposition and Carbon Turnover.- 8.3.1 Strategies for Quantification of Benthic Fluxes.- 8.3.2 Regional Assessments of Deep-Ocean Fluxes.- 8.3.3 Global Estimates of Deep Ocean Carbon Deposition and Remineralization.- 8.4 Proxy Indicators of Paleoproductivity.- 8.4.1 Estimates Based on Organic Carbon Burial Rates.- 8.4.2 Estimates Based on Biomarker Accumulation Rates.- 8.4.3 Estimates Based on Barium Accumulation Rates.- 8.4.4 Estimates Based on Radionuclide Ratios.- 8.4.5 Estimates Based on Redox-Sensitive Trace Elements.- 8.4.6 Estimates Based on Benthic and Planktonic Foraminifera.- 8.4.7 Estimates Based on Coccolithophorids and Diatoms.- 8.4.8 Proxies of Surface Nutrient Concentration.- 8.4.9 Proxies of Surface Nutrient UtiUzation Efficiency.- 8.5 Conclusions.- References.- 9 Global Ocean Carbon Cycle Modeling.- 9.1 Introduction.- 9.2 Anthropogenic Carbon Uptake, Transient Tracers, and Physics.- 9.3 Global Biogeochemical Cycles.- 9.4 Ecosystem Dynamics.- 9.5 Other Topics.- 9.5.1 Mesoscale Physics.- 9.5.2 Climate Variability and Secular Change.- 9.5.3 Land, Coastal Ocean, and Sediment Interactions.- 9.5.4 Inverse Modeling and Data Assimilation.- 9.6 Summary.- Acknowledgements.- References.- 10 Temporal Studies of Biogeochemical Processes Determined from Ocean Time-Series Observations During the JGOFS Era.- 10.1 Introduction.- 10.2 The Oceanic Carbon Cycle and the Biological Carbon Pump.- 10.3 Global Inventory of JGOFS Time-Series Programs.- 10.3.1 Bermuda Atlantic Time-Series Study (BATS).- 10.3.2 Dynamique des Flux Atmospherique en Mediterranee (DYFAMED).- 10.3.3 European Station for Time-Series in the Ocean Canary Islands (ESTOC).- 10.3.4 Hawaii Ocean Time-Series (HOT).- 10.3.5 Kerguelen Point Fixe (KERFIX).- 10.3.6 Kyodo Northwest Pacific Ocean Time-Series (KNOT).- 10.3.7 Ocean Station Papa (OSP or Sta. P).- 10.3.8 South East Asia Time-Series Station (SEATS).- 10.4 Some Practical Lessons Learned from the JGOFS Time-Series Programs.- 10.5 Cross Ecosystem Habitat Comparisons: Nutrient, Chlorophyll and Production-Export Relationships.- 10.5.1 Case Study 1: Estimates of the Biological Carbon Pump at Ocean Times Series Sites.- 10.5.2 Case Study 2: A 'Bermuda Triangle' Carbon Mystery with Global Implications.- 10.5.3 Case Study 3: Decade-Scale, Climate-Driven Changes in the N2-Primed Prokaryote Carbon Pump.- 10.5.4 Case Study 4: OSP Ecosytem Dynamics and the Role of Iron.- 10.6 Beyond JGOFS: a Prospectus.- Acknowledgements.- References.- 11 JGOFS: a Retrospective View.- 11.1 The JGOFS Science Plan.- 11.2 The Process Studies.- 11.3 Iron Fertilisation Experiments.- 11.4 The Time Series Stations.- 11.5 The Global Survey.- 11.6 Remote Sensing.- 11.7 Benthic Studies.- 11.8 Continental Margins.- 11.9 Data Archiving.- 11.10 Models and Synthesis.- 11.11 Overall Conclusions.- References.

Additional information

GOR010336235
Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change by Volume editor Michael J. R. Fasham
Volume editor Michael J. R. Fasham
Global Change - The IGBP Series
Used - Very Good
Hardback
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
2003-04-08
301
3540423982
9783540423980
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us.