Cart
Free US shipping over $10
Proud to be B-Corp

Unraveling DNA Michael Winfrey

Unraveling DNA By Michael Winfrey

Unraveling DNA by Michael Winfrey


$6.12
Condition - Good
Only 2 left

Summary

Introduces students to the basic techniques of molecular biology using an integrated series of laboratory exercises that involve the cloning and analysis of the bioluminescence genes from the marine bacterium Vibrio fischeri. This book organizes the exercises as part of a major cloning project.

Faster Shipping

Get this product faster from our US warehouse

Unraveling DNA Summary

Unraveling DNA: Molecular Biology for the Laboratory by Michael Winfrey

Appropriate for a variety of undergraduate courses covering biology and genetics, including Molecular Biology, Microbial Genetics, Genetics (portion on Molecular Genetics), Biochemistry (portion on Molecular Genetics), Advanced Bacteriology or Microbiology. This innovative manual introduces students to all of the basic techniques of modern molecular biology using an integrated series of laboratory exercises that involve the cloning and analysis of the bioluminescence (lux) genes from the marine bacterium Vibrio fischeri. By organizing the exercises as part of a major cloning project, students get the sense of performing a complete cloning project, rather than just learning a collection of procedures. The manual is divided into discrete units with each demonstrating one or more aspects of the cloning project. Collectively, the entire series of exercises requires approximately three quarters to one full semester to complete with two laboratory periods per week. Smaller portions of the manuals are easily adapted to fewer lab periods.

Table of Contents

I. INTRODUCTORY TECHNIQUES. 1. Introduction to the Laboratory: Basic Equipment and Bacteriological Techniques. 2. Preparation of Media and Reagents Used in Molecular Biology. 3. Isolation of Luminescent Bacteria from Natural Sources. 4. Restriction Digestion and Agarose Gel Electrophoresis of DNA. II. DNA ISOLATION AND ANALYSIS. 5. Isolation of Chromosomal DNA from Vibrio fischeri. 6. Large-Scale Purification of Plasmid DNA. 7. Spectrophotometric Analysis of DNA. III. CLONING THE LUX OPERON 8. Restriction Digestion of Vibrio fischeri Genomic DNA and Plasmid Vector. 9. Quantification of Genomic DNA by Fluorometry and Agarose Plate Fluorescence. 10. Ligation of Restriction Fragments of Vibrio fischeri DNA to Plasmid Vector. 11. Preparation of Competent Escherichia coli DH5. 12. Transformation of Competent Escherichia coli DH5 with Recombinant Plasmids. 13. Screening the Vibrio fischeri Genomic Library for Light Producing Clones. IV. RESTRICTION MAPPING AND SOUTHERN BLOTTING 14. Small-Scale Plasmid Isolations (Mini-preps) from Bioluminescent Clones. 15. Restriction Mapping of Plasmids from Bioluminescent Clones. 16. Southern Blotting and Hybridization to Detect the luxA Gene. V. SUBCLONING THE LUX A GENE 17. Restriction Digestion of lux Plasmids and Cloning Vector for Subcloning luxA. 18. Gel Purification of DNA Restriction Fragments Containing luxA. 19. Subcloning luxA into A Plasmid Vector. 20. Transformation of Competent Escherichia coli DH5 with Subcloned DNA. 21. Colony Hybridization to Screen for luxA Subclones. 22. Small-Scale Plasmid Isolations (Mini-Preps) from luxA Clones. VI. ADVANCED TECHNIQUES. 23. Amplification of luxA from Natural Isolates by the Polymerase Chain Reaction (PCR). 24. Southern Blotting and Hybridization of PCR Products. 25. DNA Sequencing of lux Genes from Plasmid Templates. 26. Computer Analysis of DNA Sequences Using the World Wide Web. 27. Mapping the Vibrio fischeri Genome by Pulsed Field Gel Electrophoresis. 28. Independent Projects in Molecular Biology. APPENDICES. 1. The Metric System and Units of Measure. 2. Centrifugation. 3. Spectrophotometry. 4. Agarose and Polyacrylamide Gel Electrophoresis. 5. Methylene Blue Staining of Agarose Gels. 6. Nucleic Acid Hybridization. 7. Alcohol Precipitation of Nucleic Acids. 8. Care and Handling of Enzymes. 9. Restriction Endonucleases. 10. Enzymes Used in Molecular Biology. 11. Maps of Cloning Vectors and Bacteriophage Lambda. 12. Proper Handling and Disposal of Hazardous Materials. 13. Procedures and Precautions for the Use of Radioisotopes. 14. Equipment and Supplies. 15. Media and Reagents. 16. Bacterial Strains. 17. Lists of Suppliers. 18. Recommended References. 19. Restriction Mapping Problems.

Additional information

CIN0132700344G
9780132700344
0132700344
Unraveling DNA: Molecular Biology for the Laboratory by Michael Winfrey
Used - Good
Paperback
Pearson Education (US)
19970210
400
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - Unraveling DNA