Computer Age Statistical Inference, Student Edition

Passer aux informations produits
1 de 1

Cliquez pour voir l'intérieur

Computer Age Statistical Inference, Student Edition

Regular price
Checking stock...
Regular price
Checking stock...
Résumé

Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

Computer Age Statistical Inference, Student Edition by Bradley Efron

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Bradley Efron is Max H. Stein Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University. He has held visiting faculty appointments at Harvard, UC Berkeley, and Imperial College London. Efron has worked extensively on theories of statistical inference, and is the inventor of the bootstrap sampling technique. He received the National Medal of Science in 2005, the Guy Medal in Gold of the Royal Statistical Society in 2014, and the International Prize in Statistics in 2019. Trevor Hastie is John A. Overdeck Professor, Professor of Statistics, and Professor of Biomedical Data Science at Stanford University. He is coauthor of The Elements of Statistical Learning (2009), a key text in the field of modern data analysis. He is also known for his work on generalized additive models, and for his contributions to the R computing environment. Hastie was elected to the National Academy of Sciences in 2018, received the Sigillum Magnum from the University of Bologna in 2019, and the Leo Breiman award from the American Statistical Association in 2020.
SKU Non disponible
ISBN 13 9781108823418
ISBN 10 1108823416
Titre Computer Age Statistical Inference, Student Edition
Auteur Bradley Efron
Série Institute Of Mathematical Statistics Monographs
État Non disponible
Type de reliure Paperback
Éditeur Cambridge University Press
Année de publication 2021-06-17
Nombre de pages 506
Note de couverture La photo du livre est présentée à titre d'illustration uniquement. La reliure, la couverture ou l'édition réelle peuvent varier.
Note Non disponible