Introduction to Machine Learning

Passer aux informations produits
1 de 1

Cliquez pour voir l'intérieur

Introduction to Machine Learning

Regular price
Checking stock...
Regular price
Checking stock...
Proud to be B-Corp

Our business meets the highest standards of verified social and environmental performance, public transparency and legal accountability to balance profit and purpose. In short, we care about people and the planet.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

Introduction to Machine Learning by Ethem Alpaydin

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

Machine Learning: The New AI, a volume in the MIT Press Essential Knowledge series, is his first book.

SKU Non disponible
ISBN 13 9780262043793
ISBN 10 0262043793
Titre Introduction to Machine Learning
Auteur Ethem Alpaydin
Série Adaptive Computation And Machine Learning Series
État Non disponible
Type de reliure Hardback
Éditeur MIT Press Ltd
Année de publication 2020-03-24
Nombre de pages 712
Note de couverture La photo du livre est présentée à titre d'illustration uniquement. La reliure, la couverture ou l'édition réelle peuvent varier.
Note Non disponible