Learning Spark by Nancy Hughes

Learning Spark by Nancy Hughes

Regular price
Checking stock...
Regular price
Checking stock...
Résumé

Written by the developers of Spark, this book will have data scientists and engineers up and running in no time.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

Learning Spark by Nancy Hughes

Data in all domains is getting bigger. How can you work with it efficiently? This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You'll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark's powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Holden Karau is a software development engineer at Databricks and is active in open source. She is the author of an earlier Spark book. Prior to Databricks she worked on a variety of search and classification problems at Google, Foursquare, and Amazon. She graduated from the University of Waterloo with a Bachelors of Mathematics in Computer Science. Outside of software she enjoys paying with fire, welding, and hula hooping. Most recently, Andy Konwinski co-founded Databricks. Before that he was a PhD student and then postdoc in the AMPLab at UC Berkeley, focused on large scale distributed computing and cluster scheduling. He co-created and is a committer on the Apache Mesos project. He also worked with systems engineers and researchers at Google on the design of Omega, their next generation cluster scheduling system. More recently, he developed and led the AMP Camp Big Data Bootcamps and first Spark Summit, and has been contributing to the Spark project. Matei Zaharia is a PhD student in the AMP Lab at UC Berkeley, working on topics in computer systems, cloud computing and big data. He is also a committer on Apache Hadoop and Apache Mesos. At Berkeley, he leads the development of the Spark cluster computing framework, and has also worked on projects including Mesos, the Hadoop Fair Scheduler, Hadoop's straggler detection algorithm, Shark, and multi-resource sharing. Matei got his undergraduate degree at the University of Waterloo in Canada.
SKU Non disponible
ISBN 13 9781449358624
ISBN 10 1449358624
Titre Learning Spark
Auteur Nancy Hughes
État Non disponible
Type de reliure Paperback
Éditeur O'reilly Media
Année de publication 2015-02-13
Nombre de pages 276
Note de couverture La photo du livre est présentée à titre d'illustration uniquement. La reliure, la couverture ou l'édition réelle peuvent varier.
Note Non disponible