TensorFlow 2 Reinforcement Learning Cookbook by Praveen Palanisamy

TensorFlow 2 Reinforcement Learning Cookbook by Praveen Palanisamy

Regular price
Checking stock...
Regular price
Checking stock...
Résumé

This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You'll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.

The feel-good place to buy books
  • Free delivery in the UK
  • Supporting authors with AuthorSHARE
  • 100% recyclable packaging
  • B Corp - kinder to people and planet
  • Buy-back with World of Books - Sell Your Books

TensorFlow 2 Reinforcement Learning Cookbook by Praveen Palanisamy

Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key Features Develop and deploy deep reinforcement learning-based solutions to production pipelines, products, and services Explore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic method Customize and build RL-based applications for performing real-world tasks Book DescriptionWith deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You'll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you’ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you'll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you'll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What you will learn Build deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras API Implement state-of-the-art deep reinforcement learning algorithms using minimal code Build, train, and package deep RL agents for cryptocurrency and stock trading Deploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud services Speed up agent development using distributed DNN model training Explore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service) Who this book is forThe book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.
Praveen Palanisamy, is a masters in robotic systems development from Carnegie Mellon University. He works on advancing AI for autonomous systems, as a senior AI engineer with Microsoft. In the past, he has developed AI algorithms for autonomous vehicles using deep reinforcement learning, worked with startups and in academia to build autonomous robots and intelligent systems. He is the inventor of more than 13 patents on learning methods for autonomous driving. He is the author of Hands-On Intelligent Agents with OpenAI Gym, which provides a step-by-step guide to develop Deep RL agents to solve complex problems.
SKU Non disponible
ISBN 13 9781838982546
ISBN 10 183898254X
Titre TensorFlow 2 Reinforcement Learning Cookbook
Auteur Praveen Palanisamy
État Non disponible
Type de reliure Paperback
Éditeur Packt Publishing Limited
Année de publication 2021-01-15
Nombre de pages 472
Note de couverture La photo du livre est présentée à titre d'illustration uniquement. La reliure, la couverture ou l'édition réelle peuvent varier.
Note Non disponible