Cart
Free Shipping in Australia
Proud to be B-Corp

The Fundamental Theorem of Algebra Benjamin Fine

The Fundamental Theorem of Algebra By Benjamin Fine

The Fundamental Theorem of Algebra by Benjamin Fine


$239.99
Condition - Like New
Only 3 left

Summary

To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof.

The Fundamental Theorem of Algebra Summary

The Fundamental Theorem of Algebra by Benjamin Fine

The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.

Table of Contents

1 Introduction and Historical Remarks.- 2 Complex Numbers.- 2.1 Fields and the Real Field.- 2.2 The Complex Number Field.- 2.3 Geometrical Representation of Complex Numbers.- 2.4 Polar Form and Eulers Identity.- 2.5 DeMoivres Theorem for Powers and Roots.- Exercises.- 3 Polynomials and Complex Polynomials.- 3.1 The Ring of Polynomials over a Field.- 3.2 Divisibility and Unique Factorization of Polynomials.- 3.3 Roots of Polynomials and Factorization.- 3.4 Real and Complex Polynomials.- 3.5 The Fundamental Theorem of Algebra: Proof One.- 3.6 Some Consequences of the Fundamental Theorem.- Exercises.- 4 Complex Analysis and Analytic Functions.- 4.1 Complex Functions and Analyticity.- 4.2 The Cauchy-Riemann Equations.- 4.3 Conformal Mappings and Analyticity.- Exercises.- 5 Complex Integration and Cauchys Theorem.- 5.1 Line Integrals and Greens Theorem.- 5.2 Complex Integration and Cauchys Theorem.- 5.3 The Cauchy Integral Formula and Cauchys Estimate.- 5.4 Liouvilles Theorem and the Fundamental Theorem of Algebra: Proof Ttvo.- 5.5 Some Additional Results.- 5.6 Concluding Remarks on Complex Analysis.- Exercises.- 6 Fields and Field Extensions.- 6.1 Algebraic Field Extensions.- 6.2 Adjoining Roots to Fields.- 6.3 Splitting Fields.- 6.4 Permutations and Symmetric Polynomials.- 6.5 The Fundamental Theorem of Algebra: Proof Three.- 6.6 An ApplicationThe Transcendence of e and ?.- 6.7 The Fundamental Theorem of Symmetric Polynomials.- Exercises.- 7 Galois Theory.- 7.1 Galois Theory Overview.- 7.2 Some Results From Finite Group Theory.- 7.3 Galois Extensions.- 7.4 Automorphisms and the Galois Group.- 7.5 The Fundamental Theorem of Galois Theory.- 7.6 The Fundamental Theorem of Algebra: Proof Four.- 7.7 Some Additional Applications of Galois Theory.- 7.8 Algebraic Extensions of ? and Concluding Remarks.- Exercises.- 8 7bpology and Topological Spaces.- 8.1 Winding Number and Proof Five.- 8.2 TbpologyAn Overview.- 8.3 Continuity and Metric Spaces.- 8.4 Topological Spaces and Homeomorphisms.- 8.5 Some Further Properties of Topological Spaces.- Exercises.- 9 Algebraic Zbpology and the Final Proof.- 9.1 Algebraic lbpology.- 9.2 Some Further Group TheoryAbelian Groups.- 9.3 Homotopy and the Fundamental Group.- 9.4 Homology Theory and Triangulations.- 9.5 Some Homology Computations.- 9.6 Homology of Spheres and Brouwer Degree.- 9.7 The Fundamental Theorem of Algebra: Proof Six.- 9.8 Concluding Remarks.- Exercises.- Appendix A: A Version of Gausss Original Proof.- Appendix B: Cauchys Theorem Revisited.- Appendix C: Three Additional Complex Analytic Proofs of the Fundamental Theorem of Algebra.- Appendix D: Two More Ibpological Proofs of the Fundamental Theorem of Algebra.- Bibliography and References.

Additional information

GOR013615032
9780387946573
0387946578
The Fundamental Theorem of Algebra by Benjamin Fine
Used - Like New
Hardback
Springer-Verlag New York Inc.
1997-06-20
210
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
The book has been read, but looks new. The book cover has no visible wear, and the dust jacket is included if applicable. No missing or damaged pages, no tears, possible very minimal creasing, no underlining or highlighting of text, and no writing in the margins

Customer Reviews - The Fundamental Theorem of Algebra