Cart
Free Shipping in Australia
Proud to be B-Corp

Stable Isotope Geochemistry Jochen Hoefs

Stable Isotope Geochemistry By Jochen Hoefs

Stable Isotope Geochemistry by Jochen Hoefs


Summary

This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary.

Stable Isotope Geochemistry Summary

Stable Isotope Geochemistry by Jochen Hoefs

This classic textbook is an introduction to the systematics and the use of stable isotopes in geosciences. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. Since the publication of the previous edition improvements in multi-collector ICP mass-spectrometry have increased the ability to measure isotope ratios with very high precision for many elements of the periodic table. The amount of published data has increased tremendously in the last years; thus, conclusions based on a limited database are now better constrained. In this new edition, therefore, 47 elements with resolvable natural variations in isotope composition are discussed. This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary. Many new references have been added, which enable quick access to recent literature.


About Jochen Hoefs

Jochen Hoefs has been working in the field of stable isotope geochemistry of the elements hydrogen, lithium, carbon, oxygen and sulfur since 1965. His main scientific interests include the stable isotope geochemistry of the mantle and lower crust, the genesis of basaltic and granitic magmas, water/rock interactions under hydrothermal conditions, the history of the ocean and the atmosphere and the application of stable isotopes to environmental problems. He has published more than 200 scientific papers, mostly in international journals. He authored the first edition of this textbook in 1973 and updates the textbook regularly.


Table of Contents

1 Theoretical and Experimental Principles

1.1 General Characteristics of Isotopes

1.2 Isotope Effects

1.3 Isotope Fractionation Processes

1.3.1 Isotope Exchange

1.3.1.1 Fractionation Factor ( )

1.3.1.2 The Delta Value ( )

1.3.1.3 Evaporation-Condensation Processes

1.3.2 Kinetic Effects

1.3.3 Mass-Dependent and Mass-Independent Isotope Effects

1.3.3.1 Mass Dependent Effects

1.3.3.2 Mass Independent Effects

1.3.4 Nuclear Volume and Magnetic Isotope Effects

1.3.4.1 Nuclear Volume Effects

1.3.4.2 Magnetic Isotope Effects

1.3.5 Multiply Substituted Isotopologues

1.3.5.1 Position or Site-Specific Isotope Fractionations

1.3.6 Diffusion

1.3.7 Other Factors Influencing Isotopic Fractionations

1.3.8 Isotope Geothermometers

1.4 Basic Principles of Mass Spectrometry

1.4.1 Continuous Flow-Isotope Ratio Monitoring Mass
Spectrometers

1.4.2 General Remarks on Sample Preparation Methods for Gases

1.4.3 Laser Microprobe

1.4.4 High-mass resolution multiple-collector IR mass spectrometry

1.4.5 Infrared spectroscopy

Cavity Ring-Down Spectroscopy

1.4.6 Nuclear Magnetic Resonance (NMR) Spectroscopy

1.5 Standards

1.6 Microanalytical Techniques

1.6.1 Multicollector-ICP-Mass Spectrometry

1.6.2 Secondary Ion Mass Spectrometry (SIMS)

1.7 References

2 Isotope Fractionation Processes of Selected Elements

Part I Traditional Isotopes

2.1 Hydrogen

2.1.1 Methods

2.1.2 Standards

2.1.3 Fractionation Processes

2.1.3.1 Water Fractionations

2.1.3.2 Equilibrium Reactions

2.1.3.3 Fractionations during Biosynthesis

2.1.3.4 Other Fractionations

2.2 Carbon

2.2.1 Analytical Methods

2.2.1.1 Standards

2.2.2 Fractionation Processes

2.2.2.1 Carbonate System

2.2.2.2 Other Equilibrium Isotope Fractionations

2.2.2.3 Organic Carbon System

2.2.2.4 Interactions between Carbonate-Carbon
and Organic Carbon

2.3 Nitrogen

2.3.1 Analytical Methods

2.3.2 Biological Nitrogen Isotope Fractionations

2.3.3 Trophic level indicator

2.3.4 Nitrogen Isotope Distribution in the Earth

2.3.5 Nitrogen in the Ocean

2.4 Oxygen

2.4.1 Analytical Methods

2.4.1.1 Water

2.4.1.2 Carbonates

2.4.1.3 Silicates

2.4.1.4 Phosphates

2.4.1.5 Sulfates

2.4.1.6 Nitrates

2.4.2 Standards

2.4.3 Fractionation Processes

2.4.3.1 Fractionation of Water

2.4.3.2 CO2 - H2O System

2.4.3.3 Mineral Fractionations

2.4.4 Triple Oxygen Isotope Compositions (new figure)

2.4.5 Fluid-Rock Interactions

2.5 Sulfur

2.5.1 Methods

2.5.2 Fractionation Mechanisms

2.5.2.1 Equilibrium Reactions

2.5.2.2 Dissimilatory Sulfate Reduction

2.5.2.3 Thermochemical Reduction of Sulfate

2.5.3 Quadruple Sulfur Isotopes (new figure)

Part II Non-traditional Isotopes

Introductory remarks

2.6 Lithium

2.6.1 Methods

2.6.2 Diffusion

2.6.3 Magmatic Rocks

2.6.4 Weathering

2.6.5 Ocean Water

2.6.6 Meteoric Water

2.7 Boron

2.7.1 Methods

2.7.2 Isotope Fractionation Mechanism

2.7.3 Fractionations at High Temperatures

2.7.4 Weathering environment

2.7.5 Tourmaline

2.8-2.11 Alkaline earth elements

2.8 Magnesium

2.8.1 Calculated temperature fractionations

2.8.2 Fractionations during Weathering

2.8.3 Ocean Water

2.8.4 Carbonates

2.8.5 Plants and Animals

2.9 Calcium

2.9.1 Analytical Techniques

2.9.2 High Temperature Fractionations

2.9.3 Weathering

2.9.4 Fractionations during Carbonate Precipitation

2.9.5 Variations of ocean water with geologic time

2.9.6 Plants, Animals and Humans

2.10 Strontium

2.10.1 Silicates

2.10.2 Carbonates and Sulfates

2.10.3 Fluids and Plants

2.11 Barium

2.11.1 Magmatic systems

2.11.2 Ocean

2.12. Silicon

2.12.1 Equilibrium Isotope Fractionations

2.12.2 High-Temperature Fractionations

2.12.3 Chemical Weathering and Mineral Precipitation

2.12.4 Fractionations in Ocean Water

2.12.5 Cherts

2.12.6 Plants

2.13-2.14 The halogens chlorine and bromine

2.13 Chlorine

2.13.1 Methods

2.13.2 Hydrosphere

2.13.3 Mantle-Derived Rocks

2.13.4 Applications in the Environment

2.14 Bromine

2.15 Alkali Elements(potassium, rubidium)

2.15 Potassium

2.15.1 Mineral isotope fractionations

2.15.2 Magmatic environment

2.15.3 Weathering environment

2.16 Rubidium

2.17 Titanium

2.17.1 Magmatic fractionations

2.18 Vanadium

2.18.1 High-temperature fractionations

2.18.2 Low-temperature fractionations

2.19 Chromium

2.19.1 Mantle Rocks

2.19.2 River and ocean water

2.19.3 Carbonates

2.19.4 Paleo Redox Proxy

2.19.5 Anthropogenic Cr in the Environment

2.20 Iron

2.20.1 Analytical Methods

2.20.2 Isotope Equilibrium Studies

2.20.3 Meteorites

2.20.4 Igneous Rocks

2.20.5 Sediments

2.20.6 Ocean and River Water

2.20.7 Plants

2.21 Nickel

2.21.1 Meteorites and Mantle Derived Rocks

2.21.2 Water

2.21.3 Plants

2.22 Copper

2.22.1 Magmatic Rocks

2.22.2 Ore Deposits

2.22.3 Low-Temperature Fractionations

2.22.4 Water

2.22.5 Plants

2.23 Zinc

2.23.1 Fractionations during Evaporation

2.23.2 Mantle Derived Rocks

2.23.3 Ore Deposits

2.23.4 Ocean

2.23.5 Plants and Animals

2.23.6 Anthropogenic Contamination

2.24 Gallium

2.25 Germanium

2.25.1 Ore deposits

2.25.2 Hydrosphere

2.26-2.27 Selenium and Tellurium

2.26 Selenium

2.26.1 Fractionation Processes

2.26.2 Natural variations at high temperatures

2.26.3 Ocean

2.27 Tellurium

2.28 Zirconium

2.29 Molybdenum

2.29.1 Magmatic Rocks

2.29.2 Molybdenites

2.29.3 Sediments

2.29.4 Palaeoredox Proxy

2.30 Silver

2.31 Cadmium

2.31.1 Extraterrestrial Materials

2.31.2 Marine Environment

2.31.3 Ore deposits and anthropogenic Pollution

2.32 Tin

2.32.1 Magmatic rocks

2.32.2 Ore deposits

2.32.3 Tin in the environment

2.33 Antimony

2.34-2.37 Rare Earth Elements

2. 34 Cerium

2.35 Neodymium

2.36 Europium

2.37 Heavy Rare Earth Elements

2.38 Rhenium

2.39 Tungsten

2.40-2.44 Platinum Group Elements (PGEs)

2.40 Palladium

2.41 Platinum

2.42 Ruthenium

2.43 Iridium

2.44 Osmium

2.45 Mercury

2.45.1 MDF and MIF Fractionation Processes

2.45.2 Igneous rocks and ore deposits

2.45.3 Sediments

2.45.4 Environmental Pollutant

2.46 Thallium

2.46.1 Igneous Rocks

2.46.2 Fractionations in the Ocean

2.47 Uranium

2.47.1 Fractionation Processes

2.47.2 Mantle Derived Rocks

2.47.3 Ore Deposits

2.47.4 Rivers and the Ocean

2.47.5 Paleoredox Proxy

2.48 References

3 Variations of Stable Isotope Ratios in Nature

3.1 Extraterrestrial Materials

3.1.1 Chondrites

3.1.1.1 Oxygen

3.1.1.2 Hydrogen

3.1.1.3 Carbon

3.1.1.4 Nitrogen

3.1.1.5 Sulfur

3.1.1.6 Metals

3.1.1.7 Meteorite-Earth relationship

3.1.2 The Moon

3.1.2.1 Oxygen

3.1.2.2 Hydrogen

3.1.2.3 Other volatile elements

3.1.3 Mars

3.1.3.1 Oxygen

3.1.3.2 Hydrogen

3.1.3.3 Carbon

3.1.3.4 Sulfur

3.1.4 Venus

3.2 Mantle

3.2.1 Oxygen

3.2.2 Hydrogen

3.2.3 Carbon

3.2.4 Nitrogen

3.2.5 Sulfur

3.2.6 Stable Isotope Composition of the Core

3.3 Magmatic Rocks

3.3.1 Fractional Crystallization

3.3.2 Differences between Volcanic and Plutonic Rocks

3.3.3 Low Temperature Alteration Processes

3.3.4 Assimilation of Crustal Rocks

3.3.5 Glasses from Different Tectonic Settings

3.3.5.1 Oxygen

3.3.5.2 Hydrogen

3.3.5.3 Carbon

3.3.5.4 Nitrogen

3.3.5.5 Sulfur

3.3.6 Magnesium and Iron (new figure)

3.3.7 Lithium and Boron

3.3.8 Ocean crust

3.3.9 Granitic Rocks

3.3.9.1 Whole-rock oxygen

3.3.9.2 Non-traditional isotopes

3.3.9.3 Zircon

3.3.10 Volatiles in Magmatic Systems

3.3.10.1 Water

3.3.10.2 Carbon

3.3.10.3 Nitrogen

3.3.10.4 Sulfur

3.3.11 Isotope Thermometers in Geothermal Systems

3.4 Metamorphic Rocks

3.4.1 Contact Metamorphism

3.4.2 Regional Metamorphism

3.4.3 Subduction zone metamorphism

3.4.4 Lower Crustal Rocks

3.4.5 Thermometry

3.5 Ore Deposits and Hydrothermal Systems

3.5.1 Origin of Ore Fluids

3.5.1.1 Magmatic Water

3.5.1.2 Metamorphic Water

3.5.1.3 Formation Waters

3.5.2 Wall-Rock Alteration

3.5.3 Fossil Hydrothermal Systems

3.5.4 Hydrothermal Carbonates

3.5.5 Sulfur Isotope Composition of Ore Deposits

3.5.5.1 The Importance of fO2 and pH

3.5.5.2 Magmatic Ore Deposits

3.5.5.3 Porphyry Copper Deposits

3.5.5.4 Recent and Fossil Sulfide Deposits at Mid-Ocean Ridges

3.5.5.5 Biogenic Deposits

3.5.5.6 Metamorphosed Deposits

3.5.6 Metal Isotopes in ore deposits (including new figure)

3.5.6.1 Copper

3.5.6.2 Iron

3.5.6.3 Zinc

3.6 Hydrosphere

3.6.1 Meteoric Water-General Considerations

3.6.1.1 2H - 18 O Relationship, Deuterium (d) - Excess

3.6.1.2 17O- 18 O Relationships, 17O Excess

3.6.1.3 Meteoric Waters in the Past

3.6.2 Ice Cores

3.6.3 Groundwater

3.6.4 Rivers

3.6.5 Isotope Fractionations during Evaporation

3.6.6 Ocean Water

3.6.6.1 Oxygen and hydrogen isotopes

3.6.6.2 Metal isotopes

3.6.7 Pore Waters

3.6.8 Formation Water

3.6.9 Water in Hydrated Salt Minerals

3.7 The Isotopic Composition of Dissolved and Particulate
Compounds in Ocean and Fresh Waters

3.7.1 Carbon Species in Water

3.7.1.1 Bicarbonate in Ocean Water

3.7.1.2 Particulate Organic Matter (POM)

3.7.1.3 Carbon Isotope Composition of Pore Waters

3.7.1.4 Carbon in Fresh Waters

3.7.2 Silicon

3.7.3 Nitrogen

3.7.4 Oxygen

3.7.5 Sulfate

3.7.6 Phosphate

3.8 Isotopic Composition of the Ocean during Geologic History

3.8.1 Oxygen

3.8.2 Carbon

3.8.3 Sulfur

3.8.4 Lithium

3.8.5 Boron

3.8.6 Calcium

3.9 Atmosphere

3.9.1 Atmospheric Water Vapour

3.9.2 Nitrogen

3.9.2.1 Nitrous Oxide

3.9.3 Oxygen

3.9.3.1 Evolution of Atmospheric Oxygen

3.9.4 Carbon Dioxide

3.9.4.1 Carbon

3.9.4.2 Oxygen

3.9.4.3 Long Term Changes in the CO2 Concentration

3.9.5 Carbon Monoxide

3.9.6 Methane

3.9.7 Hydrogen

3.9.8 Sulfur

3.9.9 Perchlorate

3.10 Biosphere

3.10.1 Living Organic Matter

3.10.1.1 Bulk Carbon

3.10.1.2 Position Specific Isotope Composition

3.10.1.3 Hydrogen

3.10.1.4 Oxygen

3.10.1.5 Nitrogen

3.10.1.6 Sulfur

3.10.1.7 Metals in plants

3.10.2 Indicators of Diet and Metabolism

3.10.3 Tracing Anthropogenic Organic Contaminant Sources

3.10.4 Marine versus Terrestrial Organic Matter

3.10.5 Fossil Organic Matter

3.10.6 Oil

3.10.7 Coal

3.10.7.1 Black Carbon

3.10.8 Natural Gas

3.10.8.1 Biogenic Gas

3.10.8.2 Thermogenic Gas

3.10.8.3 Abiogenic Methane

3.10.8.4 Isotope Clumping in Methane

3.10.8.5 Nitrogen in Natural Gas

3.10.8.6 Isotope Signatures of Early Life

3.11 Sedimentary Rocks

3.11.1 Fractionations during Weathering

3.11.2 Clastic Sediments

3.11.3 Clay Minerals

3.11.4 Biogenic Silica and Cherts

3.11.4.1 Biogenic Silica

3.11.4.2 Cherts

3.11.5 Marine Carbonates

3.11.5.1 Oxygen

3.11.5.2 Carbon

3.11.6 Diagenesis

3.11.6.1 Burial Pathway

3.11.6.2 Meteoric Pathway

3.11.7 Limestones

3.11.7.1 Carbon isotope stratigraphy

3.11.8 Dolomites

3.11.9 Freshwater Carbonates

3.11.10 Phosphates

3.11.11 Iron Oxides

3.11.11.1 Oxygen

3.11.11.2 Iron

3.11.11.3 Iron-Manganese crusts

3.11.12 Sedimentary Sulfur and Pyrite

3.11.12.1 Sulfur

3.11.12.2 Pyrite

3.12 Palaeoclimatology

3.12.1 Continental Records

3.12.1.1 Tree Rings

3.12.1.2 Organic Matter

3.12.1.3 Hydroxyl-Bearing Minerals

3.12.1.4 Lake Sediments

3.12.1.5 Speleothems

3.12.1.6 Phosphates

3.12.2 Ice Cores

3.12.2.1 Correlations of Ice-Core Records

3.12.2.2 Gas-Inclusions in Ice Cores

3.12.3 Marine Records

3.12.3.1 Corals

3.12.3.2 Conodonts

3.12.3.3 Characteristic Climatic Events

3.12.3.4 Clumped isotope thermometry

3.13 Additional Applications

3.13.1 Forensic isotope geochemistry

3.13.2 Medical studies

3.14 References


Additional information

NPB9783030776947
9783030776947
3030776948
Stable Isotope Geochemistry by Jochen Hoefs
New
Paperback
Springer Nature Switzerland AG
2022-10-09
504
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Stable Isotope Geochemistry