Cart
Free Shipping in Australia
Proud to be B-Corp

Stable Isotopes in Ecology and Environmental Science Robert Michener

Stable Isotopes in Ecology and Environmental Science By Robert Michener

Stable Isotopes in Ecology and Environmental Science by Robert Michener


$185.99
Condition - New
Only 2 left

Summary

This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly.

Stable Isotopes in Ecology and Environmental Science Summary

Stable Isotopes in Ecology and Environmental Science by Robert Michener

This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly. The second edition of this book provides a thorough, up-to-date examination of these methods of research. As part of the Ecological Methods and Concepts series which provides the latest information on experimental techniques in ecology, this book looks at a wide range of techniques that use natural abundance isotopes to: * follow whole ecosystem element cycling * understand processes of soil organic matter formation * follow the movement of water in whole watersheds * understand the effects of pollution in both terrestrial and aquatic environments * study extreme systems such as hydrothermal vents * follow migrating organisms In each case, the book explains the background to the methodology, looks at the underlying principles and assumptions, and outlines the potential limitations and pitfalls. Stable Isotopes in Ecology and Environmental Science is an ideal resource for both ecologists who are new to isotopic analysis, and more experienced isotope ecologists interested in innovative techniques and pioneering new uses.

About Robert Michener

Robert Michener is the Laboratory Manager of the Boston University Stable Isotope Laboratory and has been running the internationally recognized facility for 18 years. His research interests include aquatic ecology, food web systems, and how stable isotopes can be applied to tracing pollutants, comparing pristine and impacted systems. Kate Lajtha is a Professor in the Department of Botany and Plant Pathology at Oregon State University and the Editor-in-Chief of Biogeochemistry. She is a terrestrial biogeochemist who studies soil organic matter stabilization and soil solution chemistry.

Table of Contents

Contributors. Abbreviations. Introduction. 1. Stable isotope chemistry and measurement: a primer. Elizabeth W. Sulzman. Introduction. What isotopes are, what makes them distinct. Properties of ecologically useful stable isotopes. Technological advances and current trends in the ecological use of isotopes. Acknowledgments. References. 2. Sources of variation in the stable isotopic composition of plants. John D. Marshall, J. Renee Brooks, and Kate Lajtha. Introduction. Carbon isotopes. Nitrogen isotopes. Hydrogen and oxygen isotopes. Conclusions. References. 3. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics. Charles T. Garten, Jr, Paul J. Hanson, Donald E. Todd, Jr, Bonnie B. Lau, and Deanne J. Brice. Introduction. Significance of 15N-abundance to soil carbon sequestration. Vertical changes in soil 13C-abundance and soil carbon dynamics. Conclusions. Acknowledgments. References. 4. Soil nitrogen isotope composition. R. Dave Evans. Introduction. Sources of variation in soil 15N. Patterns of soil nitrogen isotope composition. Conclusions. References. 5. Isotopic study of the biology of modern and fossil vertebrates. Paul L. Koch. Introduction. Vertebrate tissues in the fossil record. Controls on the isotopic composition of vertebrate tissues. Preservation of biogenic isotope compositions by vertebrate fossils. Paleobiological applications. Conclusions. A post-script on workshops and literature resources. References. 6. Isotopic tracking of migrant wildlife. Keith A. Hobson. Introduction. Basic principles. Marine systems. Terrestrial systems (excluding deuterium). Using deuterium patterns in precipitation. Conclusions. References. 7. Natural abundance of 15N in marine planktonic ecosystems. Joseph P. Montoya. Introduction. Background. Isotopic variation in marine nitrogen. Source delineation and isotope budgets. Animal fractionation and food web processes. Isotopic transients in marine systems. Compound-specific nitrogen isotope analyses. Conclusions. Acknowledgment. References. 8. Stable isotope studies in marine chemoautotrophically based ecosystems: An update. Cindy Lee Van Dover. Introduction. Isotopic tracing of carbon at methane seeps. Whale falls. Hydrothermal vents. Conclusions. References. 9. Stable isotope ratios as tracers in marine food webs: An update. Robert H. Michener and Les Kaufman. Introduction. Methods of assessing food webs. Phytoplankton and particulate organic carbon. Phytoplankton and particulate organic nitrogen. Marine food webs. Stable isotopes in marine conservation biology. Conclusions. Acknowledgments. References. 10. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Jacques C. Finlay and Carol Kendall. Introduction. Overview of river food webs and stable isotope approaches. Stable isotope ratios of organic matter sources in stream ecosystems. C, N, and S isotopic variability and its applications in river ecology. Conclusions. Acknowledgments. References. 11. Stable isotope tracers in watershed hydrology. Kevin J. McGuire and Jeff McDonnell. Introduction. Basic concepts in watershed hydrology. Why are stable isotopes needed?. General concepts in isotope hydrology. Applications of isotope hydrology in watershed and ecosystem studies. Conclusions. Acknowledgments. References. 12. Tracing anthropogenic inputs of nitrogen to ecosystems. Carol Kendall, Emily M. Elliott, and Scott D. Wankel. Introduction. Isotopic compositions of major N sources to ecosystems. Processes affecting the isotopic composition of DIN. Separating mixing of sources from the effects of cycling. Applications to different environmental settings. What sources of agricultural and urban sources of nitrate can be distinguished using isotopes?. Other tools for tracing anthropogenic contaminants. Conclusions. References. 13. Modeling the dynamics of stable-isotope ratios for ecosystem biogeochemistry. William S. Currie. Introduction. Designing consistent model-data linkages and comparisons. Principles and techniques of stable isotope modeling. Conclusions. Acknowledgments. References. 14. Compound-specific stable isotope analysis in ecology and paleoecology. Richard P. Evershed, Ian D. Bull, Lorna T. Corr, Zoe M. Crossman, Bart E. van Dongen, Claire Evans, Susan Jim, Hazel Mottram, Anna J. Mukherjee, and Richard D. Pancost. Introduction. Why use compound-specific stable isotopes?. Analytical considerations in compound-specific stable isotope analysis. Applications of compound-specific stable isotope approaches in ecology and paleoecology. Conclusions. References. Index

Additional information

NLS9781405126809
9781405126809
1405126809
Stable Isotopes in Ecology and Environmental Science by Robert Michener
New
Paperback
John Wiley and Sons Ltd
20070914
594
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Stable Isotopes in Ecology and Environmental Science