Cart
Free US shipping over $10
Proud to be B-Corp

How Does Earth Work Gary Smith

How Does Earth Work By Gary Smith

How Does Earth Work by Gary Smith


$11.99
Condition - Very Good
Only 2 left

Summary

Intended for introductory courses in physical geology, this book covers the traditional breadth of topics of the introductory geology course. It takes the non-traditional and effective approach of emphasizing conceptual learning of process rather than rote memorization of facts.

How Does Earth Work Summary

How Does Earth Work: Physical Geology and the Process of Science by Gary Smith

For introductory courses in physical geology.

It's about how we know what we know. How Does Earth Work? covers the traditional breadth of topics of the introductory geology course, but takes the non-traditional and highly-effective approach of emphasizing conceptual learning of process rather than rote memorization of facts.

Table of Contents

Chapter 1: Why Geology?

1.1 What is geology?

1.2 Why study geology?

1.3How do we know...how to study Earth?

1.4 What does the principle of uniformitarianism mean?

1.5 What is the theory of plate tectonics?

1.6 How does the concept of work apply to Earth?

PART I - EARTH MATERIALS: Classification, Origin, Uses

Chapter 2 Minerals: Building Blocks of the Planet

2.1 What are the properties of minerals?

2.2 What are minerals composed of?

2.3 How do we know...the atomic structure of minerals?

2.4 How do elements combine to make minerals?

2.5 What is a mineral?

2.6 What determines the physical properties of minerals?

2.7 What are the most important minerals?

EM 2.1 Basics of an Atom

EM 2.2 Silicate Mineral Structures

EM 2.3 Gemstones

Chapter 3: Rocks and Rock-Forming Processes

3.1 How and where do rocks form?

3.2 Can rocks be classified according to the processes that form them?

3.3 How do we know...how to determine rock origins?

3.4 How are the rock classes related to one another?

Chapter 4: Formation of Magma and Igneous Rocks

4.1 What are igneous processes?

4.2 How are igneous rocks classified?

4.3 Where do igneous rocks appear in a landscape?

4.4 How and why do rocks melt?

4.5 How do we know...how magma is made?

4.6 How does magma generation connect to plate tectonics?

4.7 What makes igneous rock compositions so diverse?

4.8 Why are there different types of volcanoes and volcanic eruptions?

4.9 How are volcanoes hazardous?

4.10 Why don't all magmas erupt?

EM 4.1 Bowen's Reaction Series

EM 4.2 Mitigating and Forecasting Volcanic Hazards

Chapter 5: Formation of Sediment and Sedimentary Rocks

5.1 How and why do rocks disintegrate to form sediment?

5.2 What is the link between weathering and sediment?

5.3 Why are fossils found in sedimentary rocks?

5.4 How does loose sediment become sedimentary rock?

5.5 How are sedimentary rocks classified?

5.6 How do sedimentary rocks reveal ancient environments?

5.7 How do we know...how to interpret unseen turbidity currents?

5.8 How do plate tectonics and sedimentary rocks connect?

EM 5.1 Chemical Reactions and Chemical Equations

EM 5.2 Why is Seawater Salty?

EM 5.3 Geochemistry of Calcite

Chapter 6: Formation of Metamorphic Rocks

6.1 What is metamorphism?

6.2 What is the role of temperature in metamorphism?

6.3 What is the role of pressure in metamorphism?

6.4 What is the role of fluid in metamorphism?

6.5 Why do metamorphic rocks exist at the surface?

6.6 How do we know...how to determine the stability of minerals?

6.7 What were the conditions of metamorphism?

6.8 How are metamorphic rocks classified?

6.9 What was the rock before it was metamorphosed?

6.10 Where does metamorphism occur?

EM 6.1 Metamorphic Isograds, Zones, and Facies

Chapter 7: Earth Materials as Time Keepers

7.1 How do you determine the order of events?

7.2 How are geologic events placed in relative order?

7.3 How do geologists determine the relative ages in widely separated places?

7.4 How was the geologic time scale constructed?

7.5 How do you recognize gaps in the rock record?

7.6 How have scientists determined the age of Earth?

7.7 How is the absolute age of a rock determined?

7.8 How do we know...how to determine half-lives and decay rates?

7.9 How do you reconstruct geologic history with rocks?

FM 7.1 Radioactivity and Radioactive Decay

EM7.1 The Mathematics of Radioactive-Isotope Decay

EM7.2 Using Geologic Clocks

PART II - EARTH'S INTERNAL PROCESSES

Chapter 8: Journey to the Center of Earth

8.1 How do geologists know about rocks in Earth's interior?

8.2 How do earthquakes help make images of Earth's interior?

8.3 How do we know...how to determine velocities of seismic waves in rocks?

8.4 What composes the interior of the Earth?

8.5 How hot is the interior of Earth?

EM 8.1 Sizing Up Earth

EM 8.2 How to Locate an Earthquake

EM 8.3 Velocity of Seismic Waves

EM 8.4 Mantle Minerals

EM 8.5 Meteorites as Guides to Earth's Interior

Chapter 9: Making Earth

9.1 How did Earth form?

9.2 How did the core and mantle form?

9.3 How does the crust form?

9.4 How did the atmosphere and hydrosphere form?

9.5 How do we know...the hydrosphere came from the geosphere?

EM 9.1 Geologic Tour of the Solar System

EM 9.2 Origin of the Moon

Chapter 10: Motion Inside Earth

10.1 How does convection work?

10.2 What does mantle convection look like?

10.3 How does outer-core convection generate the magnetic field?

10.4How do we know...Earth's core is a dynamo?

EM 10.1 Is Mantle Convection Physically Possible?

PART III - EARTH DEFORMATION

Chapter 11: Deformation of Rocks

11.1 What do deformed rocks look like?

11.2 How are resources related to geologic structures?

11.3 How do rocks deform?

11.4 How do we know...why some rocks break and others flow?

11.5 How do geological structures relate to stress, strain, and strength?

11.6 How does strength vary in the lithosphere?

11.7 How do earthquakes relate to rock deformation?

11.8 How are earthquakes measured?

11.9 Why are earthquakes destructive?

EM 11.1 Calculating Magnitude and Energy Released from an Earthquake

EM 11.2 Mitigating and Forecasting Earthquake Hazards

Chapter 12: Global Tectonics - Plates and Plumes

12.1 How does continental drift relate to plate tectonics?

12.2 What is the evidence that plates are rigid?

12.3 What is the evidence that plates move apart at divergent plate boundaries?

12.4 What is the evidence that subduction occurs at convergent plate boundaries?

12.5 What is the evidence that plates slide past one another at transform plate boundaries?

12.6 What does the mantle-plume hypothesis explain that plate tectonics cannot explain?

12.7 How do we know...that plates move in real time?

12.8 What forces cause plate motions and plumes?

12.0 What were the consequences of plate motion over geologic time?

EM 12.1 Describing Plate Motion on the Surface of a Sphere

EM 12.2 Using Paleomagnetism to Reconstruct Past Continental Positions

Chapter 13: Tectonics and Surface Relief

13.1 Why are continents high and oceans low?

13.2 How do we know...that mountains have roots?

13.3 How does isostasy relate to active geologic processes?

13.4 Why does sea-level change?

13.5 How and where to mountains form?

13.6 How does mountain building relate to the growth of continents?

EM 13.1 Measuring Uplift Rates.

PART IV - SURFACE AND NEAR SURFACE PROCESSES

Chapter 14: Soil Formation and Landscape Stability

14.1 What is soil?

14.2 Why distinguishes soil horizons?

14.3 How do soils form?

14.4 What factors determine soil characteristics?

14.5 What are the types of soils?

14.6 How do we know...that soils include atmospheric additions?

14.7 How do human activities affect soil?

Chapter 15: Mass Movement: Landscapes in Motion

15.1 What are the characteristics of mass movements?

15.2 What causes mass movements?

15.3 What factors determine slope stability?

15.4 When do mass movements occur?

15.5 How do we know ... how to map mass-movement hazards?

15.6 How do mass movements sculpt the landscape?

Chapter 16: Streams: Flowing Water Shapes the Landscape

16.1 Where does the water come from?

16.2 Where does the sediment come from?

16.3 How do streams pick up sediment?

16.4 How do streams transport sediment?

16.5 Why do streams deposit sediment?

16.6 Why does a stream change along its course?

16.7 What factors determine the channel pattern?

16.8 How does a floodplain form?

16.9 Why do streams flood?

16.10 How do we know ... how to determining the extent of the 100-year flood?

16.11 How do human activities affect streams?

16.12 How do stream-formed landscapes change through geologic time?

16.13 How do lakes form?

EM 16.1 How a stream gage works.

EM 16.2 How to determine recurrence intervals of floods.

EM 16.3 How to control floods.

Chapter 17: Water Flowing Underground

17.1 What is ground water and where is it found?

17.2 Why and how does groundwater flow?

17.3 How do we know ... how fast ground water moves?

17.4 What is the composition of ground water?

17.5 How does ground water shape the landscape?

EM 17.1 Anatomy of a water well.

EM 17.2 Darcy's Law of ground water flow.

EM 17.3 The geology of caves.

Chapter 18: Glaciers: Sculptors of Continents, Recorders of Climate Change

18.1 What is a glacier?

18.2 How does glacial ice form?

18.3 How does ice flow?

18.4 How do glaciers erode and transport sediment?

18.5 How do glaciers deposit sediment?

18.6 What happens when glaciers reach the ocean?

18.7 How do valley glaciers modify the landscape?

18.8 How do ice sheets modify the landscape?

18.9 What did North America look like during the last Ice Age?

18.10 How do we know ... how to determine when ice ages happened?

18.11 What causes glacial climates?

EM 18.1 Ice Ages in the Great Basin.

EM 18.2 Humongous ice-age floods.

EM 18.3 Ice Ages through Earth History

Chapter 19: Shorelines: Changing Landscapes Where Land Meets Sea

19.1 What factors determine the shape of a shoreline?

19.2 How do waves form and move in water?

19.3 How do waves form shoreline landscapes?

19.4 What is the role of tides in forming coastal landscapes?

19.5 Why does shoreline location change through time?

19.6 How do we know ... that global sea level is rising?

19.7 What are the consequences of rising sea level?

EM 19.1 Changing shorelines in the Great Lakes.

Chapter 20: Wind: A Global Geologic Process

20.1 Why does wind blow?

20.2 Where is wind an influential process in the landscape?

20.3 How does wind pick up and transport sediment?

20.4 How does wind shape the landscape?

20.5 What factors determine the location and formation of deserts?

20.6 How do we know ... that wind blows dust across oceans?

EM 20.1 How the Coriolis Effect Works

Additional information

GOR004415770
9780130341297
0130341290
How Does Earth Work: Physical Geology and the Process of Science by Gary Smith
Used - Very Good
Paperback
Pearson Education (US)
20050701
708
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a used book - there is no escaping the fact it has been read by someone else and it will show signs of wear and previous use. Overall we expect it to be in very good condition, but if you are not entirely satisfied please get in touch with us

Customer Reviews - How Does Earth Work