Data Science for Supply Chain Forecasting
Data Science for Supply Chain Forecasting
World of Books
At World of Books, you’ll find millions of preloved reads at great prices, from bestsellers to hidden gems. Every book you buy saves money and helps reduce waste, so you can read more for less while giving stories a second life.
The feel-good place to buy books
- Free US shipping over $15
- Buying preloved emits 41% less CO2 than new
- Millions of affordable books
- Give your books a new home - sell them back to us!

Data Science for Supply Chain Forecasting by Nicolas Vandeput
Using data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting, Second Edition contends that a true scientific method which includes experimentation, observation, and constant questioning must be applied to supply chains to achieve excellence in demand forecasting. This second edition adds more than 45 percent extra content with four new chapters including an introduction to neural networks and the forecast value added framework. Part I focuses on statistical "traditional" models, Part II, on machine learning, and the all-new Part III discusses demand forecasting process management. The various chapters focus on both forecast models and new concepts such as metrics, underfitting, overfitting, outliers, feature optimization, and external demand drivers. The book is replete with do-it-yourself sections with implementations provided in Python (and Excel for the statistical models) to show the readers how to apply these models themselves. This hands-on book, covering the entire range of forecasting—from the basics all the way to leading-edge models—will benefit supply chain practitioners, forecasters, and analysts looking to go the extra mile with demand forecasting. Events around the book Link to a De Gruyter Online Event in which the author Nicolas Vandeput together with Stefan de Kok, supply chain innovator and CEO of Wahupa; Spyros Makridakis, professor at the University of Nicosia and director of the Institute For the Future (IFF); and Edouard Thieuleux, founder of AbcSupplyChain, discuss the general issues and challenges of demand forecasting and provide insights into best practices (process, models) and discussing how data science and machine learning impact those forecasts. The event will be moderated by Michael Gilliland, marketing manager for SAS forecasting software: https://youtu.be/1rXjXcabW2sNicolas Vandeput is a supply chain data scientist specialized in demand forecasting and inventory optimization. He founded his consultancy company SupChains in 2016 and co-founded SKU Science—a smart online platform for supply chain management—in 2018. He enjoys discussing new quantitative models and how to apply them to business reality. Passionate about education, Nicolas is both an avid learner and enjoys teaching at universities: he has taught forecasting and inventory optimization to master students since 2014 in Brussels, Belgium.
| SKU | Unavailable |
| ISBN 13 | 9783110671100 |
| ISBN 10 | 3110671107 |
| Title | Data Science for Supply Chain Forecasting |
| Author | Nicolas Vandeput |
| Condition | Unavailable |
| Binding Type | Paperback |
| Publisher | De Gruyter |
| Year published | 2021-03-22 |
| Number of pages | 310 |
| Cover note | Book picture is for illustrative purposes only, actual binding, cover or edition may vary. |
| Note | Unavailable |