Human-in-the-Loop Machine Learning
Human-in-the-Loop Machine Learning
Regular price
Checking stock...
Regular price
Checking stock...
Proud to be B-Corp
Our business meets the highest standards of verified social and environmental performance, public transparency and legal accountability to balance profit and purpose. In short, we care about people and the planet.
The feel-good place to buy books
- Free shipping in the US over $15
- Supporting authors with AuthorSHARE
- 100% recyclable packaging
- Proud to be a B Corp – A Business for good
- Sell-back with World of Books - Sell your Books

Human-in-the-Loop Machine Learning by Robert Munro
Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process. Key Features · Active Learning to sample the right data for humans to annotate · Annotation strategies to provide the optimal interface for human feedback · Supervised machine learning design and query strategies to support Human-in-the-Loop systems · Advanced Adaptive Learning approaches · Real-world use cases from well-known data scientists For software developers and data scientists with some basic Machine Learning experience. About the technology “Human-in-the-Loop machine learning” refers to the need for human interaction with machine learning systems to improve human performance, machine performance, or both. Ongoing human involvement with the right interfaces expedites the efficient labeling of tricky or novel data that a machine can’t process, reducing the potential for data-related errors. Robert Munro has built Annotation, Active Learning, and machine learning systems with machine learning-focused startups and with larger companies including Amazon, Google, IBM, and most major phone manufacturers. If you speak to your phone, if your car parks itself, if your music is tailored to your taste, or if your news articles are recommended for you, then there is a good chance that Robert contributed to this experience. Robert holds a PhD from Stanford focused on Human-in-the-Loop machine learning for healthcare and disaster response, and is a disaster response professional in addition to being a machine learning professional. A worked example throughout this text is classifying disaster-related messages from real disasters that Robert has helped respond to in the past.
Monarch: - Robert (Munro) Monarch is a data scientist and engineer who has built machine learning data for companies such as Apple, Amazon, Google, and IBM. He holds a PhD from Stanford. Robert holds a PhD from Stanford focused on Human-in-the-Loop machine learning for healthcare and disaster response, and is a disaster response professional in addition to being a machine learning professional. A worked example throughout this text is classifying disaster-related messages from real disasters that Robert has helped respond to in the past.
SKU | Unavailable |
ISBN 13 | 9781617296741 |
ISBN 10 | 1617296740 |
Title | Human-in-the-Loop Machine Learning |
Author | Robert Munro |
Condition | Unavailable |
Binding Type | Paperback |
Publisher | Manning Publications |
Year published | 2021-10-08 |
Number of pages | 325 |
Cover note | Book picture is for illustrative purposes only, actual binding, cover or edition may vary. |
Note | Unavailable |