Cart
Free Shipping in the UK
Proud to be B-Corp

Fundamentals and Applications of Anion Separations Bruce A. Moyer

Fundamentals and Applications of Anion Separations By Bruce A. Moyer

Fundamentals and Applications of Anion Separations by Bruce A. Moyer


£103.09
Condition - New
Only 2 left

Summary

This book documents the proceedings of the symposium Fundamentals and Applications of Anion Separations held during American Chemical Society National Meeting in Chicago, Illinois, August 25-30, 200I.

Fundamentals and Applications of Anion Separations Summary

Fundamentals and Applications of Anion Separations by Bruce A. Moyer

This book documents the proceedings of the symposium Fundamentals and Applications of Anion Separations held during American Chemical Society National Meeting in Chicago, Illinois, August 25-30, 200I. Nearly 40 papers devoted to discussions on anion separation related to fundamental research and applications were presented. The symposium, sponsored by Osram Sylvania, BetzDearbom, and the Separation Science & Technology Subdivision of the Industrial & Engineering Chemistry Division of the American Chemical Society was organized by Bruce A. Moyer, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Building. 4500S, Oak Ridge, TN 37831-6119, and Raj P. Singh, Chemicals and Powders R&D, Osram Sylvania, Chemical and Metallurgical Products Division, Towanda, PA 18848. It drew presenters from Australia, the Czech Republic, France, Germany, Japan, South Africa, Thailand, the United Kingdom, and the United States. Separations constitute an integral part of chemical industry. Chemical products typically originate in resources that must be concentrated and purified, chemically transformed, and subjected to fmal purification. Effluent streams from the processes must be treated to recycle reusable components and to remove environmentally harmful species. Some industrial processes are devoted to environmental cleanup after pollution has occurred. In addition, many analytical methods require a separation for preconcentration, or a separation may be an inherent part of the analysis itself. Micro separations occurring at membranes or interfaces are also related phenomena employed for ion sensing. Many species targeted for separation are naturally anionic. Although the standard separations techniques ofextraction, ion exchange, adsorption, precipitation, etc.

Table of Contents

Anions Insupramolecular Chemistry Binding, sensing, and assembly.- 1.1. Introduction.- 1.2. Binding.- 1.3. Sensing.- 1.4. Assembly.- 1.5. Conclusions.- 1.6. Acknowledgments.- 1.7. References.- Mechanisms of Anion Recognition From halides to nucleotides.- 2.1. Introduction.- 2.2. Anion Complexation in Water.- 2.2.1. Ion Pairing.- 2.2.2. Salt Effects on Ion Pairing.- 2.2.3. Ion Pairing and Additional Lipophilic Effects.- 2.2.4. Hydrogen Bond-Based Anion Receptors.- 2.2.5. Simple or Highly Preorganized Receptors?.- 2.3. Acknowledgments.- 2.4. References and Notes.- Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate Design criteria for polyalcohol hosts.- 3.1. Introduction.- 3.2. Methodology.- 3.3. Results ad Discussion.- 3.3.1. NO3? Complexes.- 3.3.2. SO4?2 Complexes.- 3.4. Summary.- 3.5. Acknowledgments.- 3.6. References.- Synthetic Receptors for Anion Recognition.- 4.1. Introduction.- 4.2. Phosphate Recognition with the Intent of RNA Hydolysis.- 4.3. Sensing for Carboxylate-Containing Natural Products and Phosphate-Containing Compounds.- 4.4. Recognition of Active Methylene Compounds and pKA Determinations.- 4.5. Recognition of Inorganic Anions.- 4.6. Summary.- 4.7. Acknowledgments.- 4.8. References.- 2,3- Dipyrrolylquinoxaline-Based Anion Sensors.- 5.1. Introduction.- 5.2. Synthesis and Initial Studies.- 5.3. Metal-Containing Systems.- 5.4. Quinoxaline Systems Bearing Multiple Pyrroles.- 5.5. Macrocyclic Systems Incorporating Quinoxalines.- 5.5.1. Quinoxpyrroles.- 5.5.2. Quinoxphyrins.- 5.5.3. Quinoxaline-Bridged Schiff-Base Porphyrinoids.- 5.6. Conclusion.- 5.7. Acknowledgment.- 5.8. References.- Metallated Calixarenes and Cyclotriveratrylenes as Anion Hosts.- 6.1. Introduction.- 6.2. ?-Metallated Calix[4]Arenes.- 6.3. A ?-Metallated Calix[5]Arene.- 6.4. ?-Metallated Cyclotriveratrylenes.- 6.5. Conclusions.- 6.6. References.- 10.1007/978-1-4419-8973-4_7. The Problem with Anions in the Doe Complex.- 7.1. Introduction.- 7.2. Litany of Offending Anions.- 7.2.1. Tank Wastes.- 7.2.2. The Environment.- 7.3. Approaches to Mitigating Doe Anion Problems.- 7.3.1. Removing Problematic Anions from Tank Wastes.- 7.3.2. Removing Problematic Anions from Groundwater.- 7.4. Conclusions.- 7.5. Acknowledgments.- 7.6. References.- Ditopic Salt-Binding Receptors for Potential use in Anion Separation Processes.- 8.1. Introduction.- 8.2. Ditopic Salt-Binding Receptors.- 8.3. Liquid Extraction or Membrane Transport using Ditopic Salt Receptors.- 8.4. Summary.- 8.5. Acknowledgments.- 8.6. References.- Dual-Host Combinations: using Tripodal Amides to Enhance Cesium Nitrate Extraction by Crown Ethers.- 9.1. Introduction.- 9.2. Design Considerations for Dual-Host Systems for Cesium Nitrate Extraction.- 9.2.1. Cesium Hosts.- 9.2.2. Nitrate Hosts.- 9.3. Thermochemical Model for Dual-Host Extraction: Binding Constants and Extraction Enhancements.- 9.4. Dual-Host Extraction: Amide Anion Hosts Derived from 1,3,5-Benzenetricarboxylic (Trimesic) Acid.- 9.5. Nitrate Binding and Dual-Host Extraction using Amide-Type Anion Hosts Derived from Tris-(2-Aminoethyl) Amine (Tren).- 9.6. 1,3,5-Tris(Aminomethyl) Benzene Derivatives.- 9.7. Conclusions.- 9.8. Acknowledgments.- 9.9. References and Notes.- Binding and Extraction of Pertechnetate and Perrhenateby Azacages.- 10.1. Introduction.- 10.2. Results and Discussion.- 10.2.1. Liquid-Liquid Extraction Experiments.- 10.2.2. Structural Considerations.- 10.3. Conclusions.- 10.4. Experimental Section.- 10.4.1. Synthesis.- 10.4.2. Liquid-Liquid Extraction Procedure.- 10.4.3. X-ray Crystallography.- 10.5. Acknowledgments.- 10.6. REferences.- Polymer-Supported Reagents for Anionic Recognition.- 11.1. Introduction.- 11.2. Soluble Complexants.- 11.3. Polymer-Boundcomplexants.- 11.4. Summary.- 11.5. Acknowledgment.- 11.6. References.- Fundamental Developments in Understanding the Interactions Between Metal Cyanides and Functional Polymers.- 12.1. Introduction.- 12.2. Principles of Goldrecovery Using resin Technology.- 12.2.1. Cyanidation.- 12.2.2. The Resin-In-Pulp (RIP) Process.- 12.2.3. Chemistry.- 12.3. Speciation of Metal Cyanides in Aqueous Media.- 12.4. Characterization of Sorbed Metal Cyanides on Resins.- 12.5. The Effect of Salinity on the Capacity And Selectivity of Resins for Gold Cyanide.- 12.6. The Elution of Metal Cyanides From Ion-Exchange Resins.- 12.7. Conclusions.- 12.8. References.- Preparation of High Purity Metals by Anion Exchange.- 13.I. Introduction.- 13.2. Experimental Procedures.- 13.2.1. Equilibrium Tests.- 13.2.2. Separation Experiments.- 13.3. Results and Discussion.- 13.3.1. Anion Exchange Equilibrium.- 13.3.2. Anion Exchange Separation Examples.- 13.4. Conclusions.- 13.5. References.- Influence of the Speciation of Metal Ions on Their Sorption on Chitosan.- 14.1. Introduction.- 14.2. Material and Methods.- 14.2.1. Materials.- 14.2.2. Chitosan Modification.- 14.2.3. Methods.- 14.2.4. Distribution of Metal Ion Species.- 14.3. Sorption of Molybdate.- 14.3.1. Effect of pH.- 14.3.2. Molybdenum Species.- 14.4. Sorption of Vanadate.- 14.4.1. Sorption Isotherms.- 14.4.2. Vanadium Species.- 14.5. Sorption of Platinum Group Metal Anions.- 14.5.1. Sorption Isotherms in HCI and H2SO4 Media.- 14.5.2. Effect of Chitosan Modification.- 14.6. Sorption of Copper- and Silver-Chelated Anions.- 14.7. Conclusions.- 14.8. Acknowledgments.- 14.9. REferences.- Selective Uptake and Separation of Oxoanions of Molybdenum, Vanadium, Tungsten, and Germanium by Synthetic Sorbents Having Polyol Moieties and Polysaccharide Based Biosorbents.- 15.1. Introduction.- 15.2. Mechanism of Selective Sorption of Oxoanions.- 15.3. Required Characteristics of A Solid Sorbent Containing Diol Ligands.- 15.4. Sorbents.- 15.4.1. Synthetic Sorbents.- 15.4.2. Polysaccharide-Based Biopolymer Sorbents.- 15.5. Experimental Methods.- 15.6. Uptake of Oxoanions by Polyol Sorbents.- 15.6.1. Uptake on Sorbent with l-deoxy-rnethyl-amino-glucitol Moiety Immobilized in StyrenefDVB Matrix.- 15.6.2. Uptake on Sorbent with Diethanolamine (DEA) Moiety Immobilized in StyrenefDVB Matrix.- 15.6.3. Uptake on Crosslinked Chitosan (poly-D-glucosamine) Beads.- 15.6.4. Uptake on Crosslinked Bead Cellulose (without Functionalization).- 15.6.5. Uptake on Brown Algea Seaweed (Ascophyllum Nodosum).- 15.7. Desorption of Oxoanions.- 15.8. Mutual Separation of Oxoanions.- 15.9. References.- Adsorptive Separation of Toxic Anions from Water Using Phosphorylated Orange Juice Residue.- 16.I. Introduction.- 16.2. Experimental.- 16.2.1. Materials.- 16.2.2. Methods.- 16.3. Results and Discussion.- 16.3.1. Batch Experiment.- 16.4. Conclusions.- 16.5. Acknowledgment.- 16.6. References.- Design and Synthesis of Powdered Magnetic Activated Carbons for Aurodicyanide Anion Adsorption from Alkaline Cyanide Leaching Solutions.- 17.1. Introduction.- 17.2. Technological Limitations.- 17.3. Activated Carbon.- 17.4. Magnetic Activated Carbon (MAC).- 17.5. Experimental Procedures.- 17.5.1. Synthesis of MACs.- 17.5.2. Characterization.- 17.6. Discussion.- 17.7. Conclusions.- 17.8. References.- Evaluation and Molecular Design of Inorganic Anion Sieves.- 18.1. Introduction.- 18.2. Evaluation of Anion Uptake.- 18.2.1. Inorganic Solids and Modes of Anion Uptake.- 18.2.2. Method of Anion Uptake Evaluation.- 18.3. Controlling Anion Selectivity of Inorganic Solids.- 18.3.1. Crystal Structure and Ion Selectivity.- 18.3.2. Design of Se032. Sieves.- 18.4. Conclusions.- 18.5. List of Symbols and Definitions.- 18.6. Acknowledgment.- 18.7. References.- Silver Incorporation at the Interlayer Gallery Region of a Layered Double Hydroxide Intercalated with Thiosulfate Anion.- 19.1. Introduction.- 19.2. Procedures.- 19.3. Results and Discussion.- 19.3.1. NMR Analysis.- 19.3.2. Thermal Analysis.- 19.3.3. FTIR Spectroscopy.- 19.3.4. Powder X-ray Diffraction (PXRD).- 19.3.5. Regularity of Interlayer Ag?+ Thiosulfate Complex.- 19.4. Applications.- 19.5. Conclusions.- 19.6. Acknowledgment.- 19.7. References.- Carbonate Precipitation on Sand (?-Quartz).- 20.1. Introduction.- 20.1.1. Industrial Significance of Precipitation.- 20.1.2. Separation of Anions via Precipitation/Crystallization.- 20.1.3. Carbonate Precipitation.- 20.2. Experimental Procedures.- 20.2.1. Sample Collection and Analysis.- 20.2.2. Calculation of Supersaturation of Water Samples with Respect to Calcite.- 20.2.3. Precipitation of Calcium Carbonate from Groundwaters.- 20.2.4. Scanning Electron Microscopic (SEM) and Energy Dispersive Spectrometric (EDS) Analyses.- 20.2.5. X-ray Diffraction Analysis.- 20.2.6. X-ray Fluorescence Analysis.- 20.3. Characterization of Carbonate Scale.- 20.4. Carbonate (Calcite) Precipitation.- 20.5. Epitaxial Growth of Calcite on Sand (?-Quartz).- 20.6. Applications.- 20.7. Inhibition of Calcite Growth on Sand Filter.- 20.8. Summary.- 20.9. Acknowledgment.- 20.10. References.

Additional information

NPB9780306479113
9780306479113
0306479117
Fundamentals and Applications of Anion Separations by Bruce A. Moyer
New
Hardback
Springer Science+Business Media
2004-06-17
358
N/A
Book picture is for illustrative purposes only, actual binding, cover or edition may vary.
This is a new book - be the first to read this copy. With untouched pages and a perfect binding, your brand new copy is ready to be opened for the first time

Customer Reviews - Fundamentals and Applications of Anion Separations